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1.  Background

1.  Background
For more than 150 years, the US National Library of Medicine (NLM) has provided access to the 
biomedical literature through the analytical efforts of human indexers. Since 1966, access has 
been provided in the form of electronically searchable document surrogates consisting of biblio-
graphic citations, descriptors assigned by indexers from the Medical Subject Headings (MeSH®) 
controlled vocabulary (MeSH, 2012) and, since 1974, author abstracts for many citations.1

The MEDLINE®/PubMed® database2 contains over 21 million citations. It currently grows at the 
rate of about 700,000 citations per year and covers 5,591 international biomedical journals in 58 
languages. Human indexing consists of reviewing the full text of each article, rather than an 
abstract or summary, and assigning descriptors that represent the central concepts as well as every 
other topic that is discussed to a significant extent. Indexers assign descriptors from the MeSH 
vocabulary of 26,581 main headings, which are often referred to as MeSH Headings (MHs). Main 
heading descriptors may be further qualified by selections from a collection of 83 topical Sub-
headings (SHs). In addition there are 203,658 Supplementary Concepts (formerly Supplementary 
Chemicals) which are available for inclusion in MEDLINE records.

Since 1990, there has been a steady and sizeable increase in the number of articles indexed for 
MEDLINE, because of both an increase in the number of indexed journals and, to a lesser extent, 
an increase in the number of in-scope articles in journals that are already being indexed. NLM 
expects to index over one million articles annually within a few years.

In the face of a growing workload and dwindling resources, we have undertaken the NLM Index-
ing Initiative (II) to explore indexing methodologies that can help ensure that MEDLINE and 
other NLM document collections maintain their quality and currency and thereby contribute to 
NLM’s mission of maintaining quality access to the biomedical literature.

2.  Project Objectives
The objective of NLM’s Indexing Initiative is to investigate methods for automatic and assisted 
indexing to enhance access to NLM document collections including MEDLINE. The project will 
be considered a success if our methods result in an increase in indexing efficiency while maintain-
ing or improving access to biomedical information.

3.  Project Significance
Human indexing is an expensive, labor-intensive activity. Indexers are highly trained individuals, 
not only in one or more of the subject domains covered by the MEDLINE database, but also in 
MEDLINE indexing practice. The average cost of indexing a MEDLINE article is $9.40; and spe-
cial situations, such as the average cost of $4.90 to add a gene link (see Section 4.4.1), only add to 
the expense.

1.  A glossary of the acronyms used throughout this report is contained in the Appendix (see Section 12.1).
2.  Note that the bibliographic citations available via PubMed is a superset of MEDLINE. Throughout this paper, we 
deal exclusively with the MEDLINE portion of the data, i.e., the part that is indexed by NLM’s Index Section.
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Considerations such as the increasing demand on NLM’s indexing resources and staff coupled 
with the flat budgets seen throughout federal agencies make clear that if (semi-) automated meth-
ods can be successfully developed and implemented, the project will have an important impact on 
NLM’s ability to continue to provide high-quality services to its constituents. Secondarily, but 
also importantly, the project should continue to contribute to information science research and 
should offer training opportunities to young researchers in the field. We hope that the research, 
training and production efforts undertaken by the Indexing Initiative over the years have indeed 
made such contributions.

4.  Methods and Procedures
Since its inception in 1996, the Indexing Initiative project has investigated language-based and 
machine learning subject indexing methods primarily for use by NLM indexers for creating 
MeSH indexing for MEDLINE. Researchers throughout the Library explored several indexing 
methodologies, the best of which eventually became a system called the NLM Medical Text 
Indexer (MTI). MTI indexing recommendations have been available to the indexers since 2002; 
since then, as shown in Figure 1, MTI’s usage has grown steadily to the point where indexers 
request MTI results almost 2,500 times a day—about 50% of indexing throughput.

Figure 1.  MTI Usage and Percent of Indexing Throughput

The II project owes its success in no small measure to NLM knowledge resources. Specifically, 
the project critically relies on the continued existence and growth of NLM’s MeSH vocabulary 
and of the Unified Medical Language System® (UMLS®) Knowledge Sources (Lindberg, Hum-
phreys, and McCray, 1993a; Bodenreider, 2004), especially the Metathesaurus®, which currently 
contains about 2,612,000 concepts, and the SPECIALIST Lexicon (2012) containing about 
449,000 lexical entries.
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Over the years, we have undertaken several research efforts to improve MTI’s accuracy and/or 
usability. One such effort explored the use of the full text of articles rather than just its title and 
abstract (Gay, Kayaalp and Aronson, 2005). After an initial exploration of articles with structured 
abstracts showed the utility of emphasizing some sections over others, we broadened the research 
to the study of complete articles. We discovered that extending MTI’s focus beyond title and 
abstract to include the text of captions, results, discussion and conclusions produced a modest 7% 
gain in MTI’s performance. As a result of this research, MTI is capable of using full text as it 
becomes more available.

Another research effort involves the addition of subheading (SH) recommendations to the existing 
MeSH heading (MH) recommendations already produced by MTI. For example, ‘Aspirin’ can be 
extended to either ‘Aspirin/therapeutic use’ or ‘Aspirin/adverse effects’ for appropriate articles. 
An initial study focusing on genomics-related subheadings was recently extended to cover all 
subheadings. Indeed, the subheading results were so well received that they have been incorpo-
rated into the Data Creation and Maintenance System (DCMS), the system NLM indexers use to 
index MEDLINE. A summary of the subheading attachment project can be found in Section 
4.2.3.6.

More recently, an explanation facility called ‘MTI Why’ has been incorporated into MTI and is 
described in Section 4.2.4.3. It allows indexers to determine what text or related citations pro-
duced a given MTI recommendation. The purpose of this feature is to promote indexers’ under-
standing of MTI, hopefully increasing adoption of the use of MTI in the indexing process. It was 
also hoped that it would elicit feedback from the indexers for improving MTI. The many sugges-
tions and additional interaction with the indexers we have experienced since its inception consti-
tute proof of the fulfillment of that hope.

Another recent research effort involves the extension of the Word Sense Disambiguation (WSD) 
facility for MetaMap, the fundamental component of MTI responsible for mapping text to UMLS 
concepts. The goal of a WSD algorithm is to choose the best concept among several concepts 
competing to represent a piece of text. For example, if text contains the word cold, the algorithm 
must decide which UMLS concept (if any) among ‘Common Cold’, ‘Cold Temperature’, and 
‘Cold Sensation’ is meant. MetaMap has been modified to use WSD, and this ongoing project is 
described in Section 4.1.2.

Finally, due to a series of experiments conducted in collaboration with NLM’s Index Section, in 
2011 MTI was designated as the First-Line Indexer (MTIFL) for 23 journals because of its suc-
cess with those publications. For MTIFL journals, MTI indexing is treated like human indexing 
and, of course, subject to the normal manual review process. The number of MTIFL journals will 
grow gradually and should reduce demand on NLM resources, thereby allowing Indexers to focus 
on more complex and challenging work.

The remainder of this section describes our methodologies and further research projects; it is 
organized into four parts: Section 4.1 describes MetaMap, a major MTI component; Section 4.2 
describes MTI, itself; Section 4.3 discusses the various ways to access II tools; and Section 4.4 
concludes by describing recent II research and outreach efforts.
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4.1  MetaMap
MetaMap is a well-known concept extraction program on its own (Aronson and Lang, 2010). But 
it is also one of the fundamental components of MTI; it performs the critical task of mapping bio-
medical text to concepts in the UMLS Metathesaurus, or equivalently, identifying UMLS 
Metathesaurus concepts referred to in text. MetaMap uses a linguistically motivated, knowledge-
intensive approach based on Natural Language Processing (NLP) and computational linguistic 
techniques, and is thus more complex than simply relying on keyword searches, dictionary 
lookup, and regular expressions. Such complexity is necessary in order to successfully overcome 
the rampant ambiguity permeating the Metathesaurus, but comes at the cost of some processing 
overhead. MetaMap has historically emphasized thoroughness over speed, but processing effi-
ciency has recently become a concern, as explained in Section 4.1.3. On balance, MetaMap seems 
to have reached an appropriate compromise between complexity and efficiency, as evidenced by 
its enthusiastic use throughout the world for bioinformatics research at numerous academic, gov-
ernment, and industrial sites.

The next section provides an overview of MetaMap processing. Subsequent sections highlight 
how several research efforts have provided solutions to functionality and processing problems 
raised by MetaMap users.

4.1.1  Overview of MetaMap Processing
The MetaMap algorithm consists of the following five phases:

1.  Parsing: MetaMap processing begins by parsing its input text into simple phrases (e.g., noun 
phrases, prepositional phrases, verbs) in order to limit the scope of further processing and 
thereby ensure the mapping effort is tractable. Parsing is accomplished using the SPECIALIST 
minimal-commitment parser (McCray et al., 1993), which produces a shallow, rather than 
deep, syntactic analysis. The parser uses the MedPost part-of-speech tagger (Smith, et al., 
2004) which assigns syntactic labels (e.g., noun, verb, adjective) to all textual items, and accu-
rately determines the simple noun phrases in text; the tagger improves accuracy even more.
Consider the citation title Inferior vena caval stent filter, which the parser analyzes as a single 
noun phrase with the following internal structure:
[mod(inferior), mod(vena), mod(caval), mod(stent), head(filter)].
Note that the parser indicates that filter is the most central part, the head, of the phrase.

2.  Variant Generation: For each phrase identified by the parser, MetaMap then generates vari-
ants, which consist of one or more consecutive phrase words (called a generator) together with 
all its/their acronyms, abbreviations, synonyms, derivational variants, and meaningful combi-
nations of these. The final set of variants for a generator also includes inflectional variants of 
all of these variants (Aronson, 1996). The variants of the generator filter are shown in Figure 2, 
arranged hierarchically according to their derivation history. Each variant is followed by its 
part of speech, its distance score from its generator and its history. For example, the noun filter 
has distance score 0 and empty history because it is the generator. Similarly, the noun filtra-
tions has distance score 10 and history “dddi”, meaning that it is an inflection of a derivational 
variant (filtration) of a derivational variant (filtrate) of a derivational variant (filtrable) of filter. 

3.  Candidate Retrieval: The candidate set of all Metathesaurus strings containing at least one of 
the variants is retrieved. These candidates are assigned an evaluation scored in the next step.



filter{[noun], 0=[]}
    filtrable{[adj], 3="d"}
        filtrate{[verb], 6="dd"}
            filtrated{[verb], 7="ddi"}
            filtrates{[verb], 7="ddi"}
            filtrating{[verb], 7="ddi"}
            filtration{[noun], 9="ddd"}
                filtrations{[noun], 10="dddi"}
                biofiltration{[noun], 12="dddd"}
                    bio-filtration{[noun], 13="ddddi"}
    filterable{[adj], 3="d"}
        filterability{[noun], 6="dd"}
            filterabilities{[noun], 7="ddi"}
            filtrabilities{[noun], 7="ddi"}
        filtrability{[noun], 6="dd"}
    filters{[noun], 1="i"}

Figure 2.  The variants of filter
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4.  Candidate Evaluation: Each Metathesaurus candidate is evaluated against the input text by 
computing a mapping between the two and then calculating the strength of the mapping using a 
linguistically principled evaluation function consisting of a weighted average of four metrics: 
centrality (involvement of the head), variation, coverage and cohesiveness. Figure 3,

909 Filter, Inferior Vena Cava (Vena Cava Filters) [Medical Device]

804 Filter (Filters) [Manufactured Object] 804 Filter (Optical filter) 
[Medical Device

804 Filter (filter information process) [Intellectual Product]

804 Filter (Filter (function)) [Conceptual Entity]

804 Filter (Filter Device Component) [Medical Device]

804 FILTER (Filter - medical device) [Medical Device]

717 Inferior vena caval [Body Location or Region]

693 Inferior Vena Cavas (Inferior vena cava structure) [Body Part, Organ, 
or Organ Component]

682 Inferior vena cava (Entire inferior vena cava) [Body Part, Organ, or 
Organ Component]

673 Vena caval (Vena cava structure) [Body Part, Organ, or Organ Compo-
nent]

637 Stent (Stent, device) [Medical Device]

637 Vena (Structure of vein of trunk) [Body Part, Organ, or Organ Compo-
nent]

637 Inferior [Spatial Concept]

637 inferior (inferiority) [Social Behavior]

637 Stent (Stent Device Component) [Medical Device]

604 Venae (Veins) [Body Part, Organ, or Organ Component]

601 Vena cava (Entire vena cava) [Body Part, Organ, or Organ Component]

557 Kava [Plant]

557 KAVA (Kava preparation) [Organic Chemical,Pharmacologic Substance]

557 CAVA (CA5A gene) [Gene or Genome]

557 Kava (Kava Use Code) [Intellectual Product]

Figure 3.  The candidate Metathesaurus concepts of Inferior vena caval stent filter

 shows the 



4.  Methods and Procedures

The NLM Indexing Initiative 6

candidates for Inferior vena caval stent filter ordered by mapping score, which has been nor-
malized to an integer between 0 and 1,000. If the candidate’s string is not the preferred name of 
the concept it represents, (e.g., all filter candidates), the preferred name is displayed in paren-
theses. Note that all of the candidates corresponding to the text filter score best, because they 
involve the head of the phrase.

5.  Mapping Construction: Complete mappings are constructed by assembling sets of candidates 
involved in disjoint parts of the phrase; the strength of the complete mappings is computed just 
as for candidate concepts. The highest-scoring complete mappings represent MetaMap’s best 
interpretation of the original phrase.
The two mappings for the phrase Inferior vena caval stent filter are shown in Figure 4

Meta Mapping (911):

   909 Filter, Inferior Vena Cava (Vena Cava Filters) [Medical Device]

   637 Stent (Stent Device Component) [Medical Device]

Meta Mapping (911):

   909 Filter, Inferior Vena Cava (Vena Cava Filters) [Medical Device]

   637 Stent (Stent, device) [Medical Device]

Figure 4.  MetaMap mappings for Inferior vena caval stent filter

, and 

consist of the highest-scoring Metathesaurus concept ‘Filter, Inferior Vena Cava’ paired with 
each of the two ‘Stent’ concepts.

4.1.2  Word Sense Disambiguation (WSD)
The main cause of errors in MetaMap processing arises from ambiguous language, specifically 
ambiguous synonyms of the concepts in the Metathesaurus. For example, the word cold occurring 
in text can mean any of several Metathesaurus concepts. The problem of ambiguity occurs in 
many Natural Language Processing (NLP) applications; this common property of language has 
given rise to the field of Word Sense Disambiguation (WSD). We have performed original WSD 
research and also applied existing WSD algorithms to our ambiguity problem.

4.1.2.1  Statistical WSD based on Journal Descriptors

Our first exploration of WSD consisted of a novel approach based on NLM’s practice of main-
taining a subject index to journal titles using general MeSH terms called Journal Descriptors 
(JDs) corresponding to specialties associated with biomedicine (Humphrey, 1998; Humphrey, 
1999; Humphrey et al., 2000; and Humphrey et al., 2006). For example, the JDs for the Journal of 
Cardiac Surgery are ‘Cardiology’ and ‘General Surgery’. Associating words with the JDs of the 
journals in which they occur led to a statistical, vector space method called Journal Descriptor 
Indexing (JDI). Despite its simplicity, JDI is quite successful in relating words to JDs. An exten-
sion of JDI in which words are associated with UMLS semantic types, led to the WSD method 
Semantic Type Indexing (STI) that has been in current use in MetaMap for some time. As long as 
the competing concepts in an instance of ambiguity have different semantic types, the method can 
choose which concept (if any) is the most likely concept being discussed in the text.
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A preliminary experiment (Humphrey et al., 2006) compared STI to a simple baseline WSD 
method, MeSH Frequency, in which an ambiguity is resolved in favor of the concept having a 
MeSH synonym with the highest frequency in a set of MEDLINE citations. The baseline method 
achieved an average Precision on the NLM WSD test collection (Weeber et al., 2001) of 24.92% 
while the four STI methods obtained between 77.10% and 78.73% average Precision. Using STI 
in MetaMap improves results slightly, but we have continued exploring other methods to improve 
performance even more, possibly combining several methods to do so. The remainder of this sec-
tion described two such promising methods.

4.1.2.2  Knowledge-based WSD

The UMLS contains a large number of concepts for which collecting training examples for WSD 
is an unfeasible task. In addition to the STI approach, we have recently developed and compared 
knowledge-based approaches based on the information about the UMLS concepts (Jimeno-Yepes 
and Aronson, 2010). We present two of the methods below:

Machine Readable Dictionary (MRD)

In this WSD approach, the context words surrounding the ambiguous word are compared to a pro-
file built from each of the UMLS concepts linked to the ambiguous term being disambiguated. 
This approach has been previously used in the biomedical domain (McInnes, 2008) with the NLM 
WSD corpus.

This algorithm can be seen as a relaxation of Lesk’s algorithm (Lesk, 1986), which is very expen-
sive because the sense combination might be exponentially large even for a single sentence. 
Vasilescu et al. (2004) have shown that similar or even better performance might be obtained by 
disambiguating each ambiguous word separately.

A concept profile vector has as dimensions the tokens obtained from the concept definition or def-
initions if available, synonyms, and related concepts excluding siblings. Stop words are discarded, 
and Porter stemming is used to normalize the tokens. In addition, the token frequency is normal-
ized based on the inverted concept frequency so that terms which are repeated many times within 
the UMLS will have less relevance. A context vector for an ambiguous term includes the term fre-
quency; stop words are removed and the Porter stemmer is applied. The word order is lost in the 
conversion.

Profile Vectors of candidate concepts linked to an ambiguous word are compared to the context of 
the ambiguous word using cosine similarity, and the concept with the highest cosine similarity is 
selected.

Automatically Extracted Corpus from MEDLINE (AEC)

In this WSD approach, corpora to train for statistical learning algorithms for ambiguous terms are 
prepared by retrieving documents from a large corpus. For our large corpus, we use MEDLINE. 
The Metathesaurus is used to obtain information related to the candidate concepts linked to an 
ambiguous term.

Queries are generated using English monosemous relatives (Leacock et al., 1998) of the candidate 
concepts which, potentially, have an unambiguous use in MEDLINE. The list of candidate rela-
tives includes synonyms and terms from related concepts as shown in the UMLS section above. In 
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our work with the Metathesaurus, we consider a term as monosemous if it is assigned to only one 
concept. This means that cold is ambiguous because it is linked to more than one concept in the 
Metathesaurus while the term cold storage is monosemous because it is linked to only one con-
cept, CUI C0010405 having preferred name ‘Cryopreservation’.

Further filtering is applied to the selected monosemous terms. Long terms (more than 50 charac-
ters) are not considered since these are unlikely to appear in MEDLINE. This strategy avoids hav-
ing unnecessarily long queries which could be problematic with retrieval systems. Very short 
terms (less than 3 characters) and numbers are not considered to avoid almost certain ambiguity. 
A standard stop word list is used to remove uninformative English terms.

We have used Eutils from PubMed as the search engine to retrieve documents from MEDLINE. 
The query language used by PubMed is based on Boolean operators and allows for field search, 
e.g. it allows searching a specific term within the metadata. Monosemous (i.e., unambiguous) 
synonyms are added to the query and joined with the OR operator. Monosemous terms from 
related concepts are combined with the AND operator with the ambiguous term assuming one 
sense per collocation, then combined with monosemous synonyms using the OR operator. In 
order to retrieve documents where the text (title or abstract of the citation) contains the query 
terms, the [tiab] search field is used. Quotes are used to find exact mentions of the terms and 
increase Precision. Examples of queries for the ambiguous term repair, with concept identifiers 
C0374711 and C0043240, using monosemous relatives are found in the following Figure 5.

Figure 5.  Query example for term repair using synonyms and related concepts

CUI: C0374711 ‘Surgical repair’
"Surgical repair"[tiab]
OR ("repair"[tiab] AND

("Corneal Transplantation"[tiab]
 OR "Corneal Transplantations"[tiab]
 OR "Corneal Graftings"[tiab]
 OR "Corneal Grafting"[tiab]
 OR "Cornea Transplantations"[tiab]

...
 OR "Repair of the Middle Ear"[tiab])

)

CUI: C0043240 ‘Wound Healing’
"Wound Healings"[tiab] OR "Wound Repair"[tiab]
OR ("repair"[tiab] AND

("Granulation Tissues"[tiab]
 OR "Natural regeneration"[tiab]
 OR "Blood Clottings"[tiab]
 OR "BLOOD COAG"[tiab]
 OR "COAG BLOOD"[tiab]

...
 OR "Integrin alphaIIbbeta3"[tiab])

)

Documents retrieved using PubMed are assigned to the concept which was used to generate the 
query. If no documents are returned for a given query, the quotes are replaced by parentheses to 
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allow finding the terms in any position in the title or abstract text. Finally, the retrieved documents 
are used to create training examples for each sense.

This corpus is used to train a statistical learning algorithm, e.g. Naïve Bayes. Disambiguation is 
then performed using the trained model with new disambiguation examples.

We have evaluated several limits on the number of retrieved documents. Since there is not a sig-
nificant difference in performance, 100 documents are collected from MEDLINE for each con-
cept identifier.

WSD Experiments

The comparison of the approaches is accomplished using two data sets. The first one is the NLM 
WSD data set (Weeber et al., 2001). The second one, MSH WSD, was developed automatically 
based on MeSH indexing (Jimeno-Yepes et al., 2011a). Links for both data sets can be found in 
the Appendix (Section 12.2). The MSH WSD data set is larger and more semantically varied than 
the NLM WSD data set and consists of 203 cases of ambiguity (vs. 50 for NLM WSD).

A comparison of the above approaches is shown in Table 1 which compares their accuracy on 
both data sets. Since the JDI approach cannot disambiguate multiple candidate concepts of the 
same semantic type, we created subsets of both data sets to allow comparison with JDI.

Table 1.  WSD accuracy results

Unsupervised Methods
Supervised 

Method

Data Set AEC JDI MRD NB
NLM WSD Set 0.6836 0.6389 0.8830
NLM WSD Subset 0.6932 0.7475 0.6526 0.9063
MSH WSD Set 0.8383 0.8070 0.9386
MSH WSD Subset 0.8448 0.6551 0.8118 0.9413

We found that in the NLM WSD data set, the best performing unsupervised method is JDI while 
in MSH WSD, the AEC approach seems to perform better. Further indirect experiments based 
either on MTI (not shown) or indirectly in summarization (Plaza et al., 2011), show that results 
based on MSH WSD tend to match the results obtained in indirect evaluation. A further analysis 
of MSH WSD shows that ambiguities due to abbreviations are easier to disambiguate than those 
for terms.

In addition to our methods, the table also shows a comparison with Naïve Bayes (NB) based on 
10-fold cross-validation. This allows us to compare the performance of our unsupervised methods 
with supervised methods like NB, which traditionally perform better than unsupervised methods. 
Our research on unsupervised methods has allowed us to reduce the gap with supervised 
approaches. In fact, our latest results with the AEC method show an accuracy of 0.87, further 
closing the gap with NB shown here.
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4.1.3  Recent Strategies to Address Performance Issues
As we mentioned in the introduction to Section 4.1, MetaMap’s complexity comes at the cost of a 
certain amount of processing overhead, especially because MetaMap has historically emphasized 
thoroughness over efficiency. In recent years, however, we have observed a significant reduction 
in processing speed due largely to the explosive growth of the UMLS Metathesaurus, which can 
be seen in Table 2.

 

1990 UMLS 2011AB UMLS Growth

Concepts (CUIs) 64,123 2,612,024 40.73x

Terms (LUIs)  96,748 7,734,809 79.95x

Strings (SUIs) 162,035  8,230,006 50.79x

Table 2.  Growth in Number of Concepts and Terms in the UMLS

The size of the Metathesaurus has recently caused certain MEDLINE citations to run for over 
twelve hours, and others to exceed the memory limitations of users’ hardware because of the com-
binatorial explosion encountered while creating final mappings: Each mapping is a subset of the 
candidate set, so the number of mappings is exponential in the number of candidates. An extreme 
example of such a combinatorial explosion is encountered in analyzing the following text, from 
PMID 10931555:

protein-4 FN3 fibronectin type III domain GSH glutathione GST glutathion S-transferase hIL-6 
human interleukin-6 HSA human serum albumin IC(50) half-maximal inhibitory concentration Ig 
immunoglobulin IMAC immobilized metal affinity chromatography K(D) equilibrium constant

This text consists of a sequence of adjectives and nouns with no internal syntactic structure; con-
sequently the SPECIALIST minimal-commitment parser (McCray et al., 1993) is unable to divide 
it into smaller components, and thus passes it to the concept identification logic as one monolithic 
phrase. MetaMap identifies 99 candidate concepts in that phrase, so the upper bound in the num-
ber of mappings is 299 (> 6*1029)—far too many for current computers to handle. In order to 
allow MetaMap to gracefully handle such troublesome text, we implemented two independent 
strategies to reduce MetaMap’s search space: (1) Pruning out candidates less likely to contribute 
to final mappings, and (2) Testing mapping subsumption without duplicate candidates. We now 
explain these two strategies.

4.1.3.1  Pruning the Candidate Set

In order to enable MetaMap to generate (perhaps suboptimal) mappings from problematic text 
without running out of memory, we implemented a mechanism of candidate pruning, which 
reduces the number of candidates used to construct mappings. The pruning mechanism takes 
place at the beginning of mapping construction (described in 5 of Section 4.1.1), and makes up to 
five passes through the candidate list, examining candidates from highest to lowest scoring, and 
applying increasingly stringent exclusion criteria based on the candidates’ phrase coverage. If one 
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pass prunes out enough candidates, the remaining passes are not made. Extensive experiments 
have shown that constructing mappings from more than 35 candidates will usually cause out-of-
memory errors, so by default we prune the candidate set to 35 candidates before undertaking map-
ping construction.

4.1.3.2  Duplicate Candidates

After candidate pruning is invoked, if necessary, to limit mappings to a manageable number, 
MetaMap next discards those mappings subsumed by other mappings: A mapping M1 is sub-
sumed by another mapping M2 if M2 has broader phrase coverage than M1. Because each of N 
mappings must be checked against all other mappings, subsumption checking is O(N2).

We recognized that many mappings were equivalent for the purposes of subsumption testing if 
they differ only in duplicate candidates, i.e., candidates with the same phrase coverage and scores. 
For example, given the input text heart condition, MetaMap generates the following candidates, 
inter alia:

861 C0348080:Condition [Qualitative Concept]
861 C1705253:Condition (Logical Condition) [Conceptual Entity]
694 C0018787:Heart [Body Part, Organ, or Organ Component]
694 C1281570:Heart (Entire heart) [Body Part, Organ, or Organ Component]

The first two concepts are duplicates, because they cover the same portion of the input text and 
receive the same score; the last two concepts are also duplicates. From these four candidates, 
MetaMap creates four mappings
Meta Mapping (888):

694 C1281570:Heart (Entire heart) [Body Part, Organ, or Organ Component]
861 C0348080:Condition [Qualitative Concept]

Meta Mapping (888):
694 C1281570:Heart (Entire heart) [Body Part, Organ, or Organ Component]
861 C1705253:Condition (Logical Condition) [Conceptual Entity]

Meta Mapping (888):
694 C0018787:Heart [Body Part, Organ, or Organ Component]
861 C0348080:Condition [Qualitative Concept]

Meta Mapping (888):
694 C0018787:Heart [Body Part, Organ, or Organ Component]
861 C1705253:Condition (Logical Condition) [Conceptual Entity]

each of which will subsume and be subsumed by exactly the same mappings. We therefore reduce 
the number of mappings that must be checked for subsumption by temporarily ignoring all but 
one candidate from each group of duplicates before constructing mappings and checking them for 
subsumption. Mappings surviving the subsumption check are then duplicated using the full set of 
duplicate candidates. The subsumption algorithm is unchanged and still quadratic, and produces 
the same number of mappings, but it is now far more efficient because it is based on a smaller N, 
resulting in substantial efficiency gains observed while analyzing texts that generate large num-
bers of candidates.
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4.1.3.3  Results of Algorithm Modifications

While processing the 2011 MEDLINE baseline with MetaMap, we encountered 146 citations that 
each ran for over twelve hours before processing was manually terminated. With these algorith-
mic improvements, these citations now complete in about 12.3 seconds each, which represents a 
speedup of well over 3500 fold, or 350,000%.

4.1.4  Other MetaMap Enhancements
In addition to the efficiency improvements described above, MetaMap has greatly benefitted from 
many other efforts, which we now present.

4.1.4.1  XML Output

Historically, MetaMap generated output in two forms only: Human-Readable Output (shown in 
Figure 3 and Figure 4 in Section 4.1.1), and Machine Output. Human-readable output has the 
obvious advantage of being readable by humans, but does not lend itself to straightforward auto-
mated postprocessing. Machine Output, which is based on MetaMap’s principal implementation 
language, Prolog, is not readily interpretable by humans but is analyzable by computer, especially 
if a Prolog system is available.

Clearly, neither human-readable nor machine output is ideal. Moreover, since XML has become 
the de facto format of internet-based information exchange, we enabled MetaMap to generate 
XML output. The disadvantage of MetaMap’s XML output is that it is extremely disk intensive: 
The XML output generated from certain MEDLINE citations can easily exceed 50MB.

4.1.4.2  NegEx

While the detection of negation is probably not as important for processing the biomedical litera-
ture, it is vitally important when processing clinical text. A complete version of Wendy Chap-
man’s NegEx algorithm (Chapman et al., 2001) was added to MetaMap in 2009 in order to be able 
to participate in the Medical NLP Challenge (organized by the Computational Medical Center 
(CMC) at Cincinnati Children’s Hospital) described in Section 4.4.4.3. MetaMap’s NegEx infor-
mation is always included in the Prolog-based Machine Output and XML output, and is included 
in the default human-readable output if the user specifies the --negex command-line option.

4.1.4.3  Additional Data Models

With every semi-annual release of the UMLS, we extensively post-process the Metathesaurus 
datafiles (MRCON, MRSO, MRREL, etc.) to create the knowledge bases used by MetaMap. The 
final result of this post-processing has historically consisted of two data models (Strict and 
Relaxed) for each UMLS Metathesaurus release. In order to accommodate the UMLS source-
vocabulary licensing permissions and processing requirements of as many users as possible, 
MetaMap releases beginning in 2011 include three distinct versions of the data, which are based 
mostly on the Restriction Categories of Metathesaurus source vocabularies. Each data version 
includes a Strict and Relaxed model; listed from smallest to largest, the three versions are:
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1.  Base: The Base data version includes those source vocabularies with no associated licensing 
restrictions beyond those of the UMLS license; in the UMLS 2011 releases, this version 
includes all and only sources of Restriction Category 0.

2.  USAbase: The USAbase data version includes those source vocabularies with no associated 
restrictions beyond a UMLS license, and free for use for US-based projects; in the 2011 UMLS 
releases, this version includes the Base vocabularies (those with Restriction Category 0), plus 
the five Category 4 sources and the four Category 9 sources (including, most notably, 
SNOMED-CT). The USAbase version is a proper superset of the Base version, and might be 
the most appropriate version for users with a SNOMED-CT license. The USAbase data version 
is MetaMap’s current default, but the default can be overridden.

3.  NLM: The NLM data version includes the full Metathesaurus other than the AMA vocabular-
ies (for which NLM has no license), namely the CPT, CPTSP, HCPT, and MTHCH vocabular-
ies from the CPT family, and the HCDT, HCPCS, and MTHHH vocabularies from the HCPCS 
family. 

Table 3.  Count of UMLS Concepts

Strict Relaxed

Base 1,254,257 (48.0%) 1,890,661 (72.4%)
USAbase 1,415,833 (54.2%) 2,193,383 (84.0%)
NLM 1,649,137 (63.4%) 2,601,570 (99.6%)
Full UMLS 2,612,024 (100%)

Table 3 presents the percentages of UMLS concepts contained in the Strict and Relaxed models of 

MetaMap’s three data versions based on the 2011AB UMLS release.

For comparison testing of the three data versions, we ran MTI on over 85,000 MEDLINE cita-
tions, and achieved best overall results with the USAbase data version. Our experiments showed 
that including vocabularies of Restriction Categories 1–3 in the NLM data version is not neces-
sary to achieve optimal results; however, users should decide which of these data versions best 
suits their specific analytical and processing requirements and is consistent with their UMLS 
licensing privileges.

4.1.4.4  User-Defined Acronyms

The biomedical literature is replete with acronyms and abbreviations (AAs) defined by the author; 
for example

Trimethyl cetyl ammonium pentachlorphenate (TCAP)
Reticulo-endothelial immune serum (REIS)
isonicotinic acid hydrazid (INAH)

MetaMap has long handled such text by interpreting subsequent appearances of the AA (TCAP, 
REIS, INAH) as if the expansion had been used instead. In 2011, we introduced user-defined AAs 
(UDAs) which enable MetaMap users provide their own definitions for AAs and other idiosyn-
cratic expressions that either are not in the UMLS or exhibit unwanted spurious ambiguity. This 
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additional functionality is targeted specifically at clinical text, in which AAs generally appear 
unadorned, with no definition. The following examples (where AAs are underlined for clarity) are 
taken from the 2011 TREC-med challenge:

He underwent a CAGB and PTCA in 2008.

patient’s EKGs show a RBBB with LAFB with 1st AV block

consider treatment for PTLD with Rituxan versus CHOP with Rituxan

The SVG to the RCA is occluded

Sequential LIMA to the diagonal and LAD and sequential SVG to the PLB and PDA and SVG to 
IM grafts were placed.

The patient initially presented to his PCP with RUQ pain and EUS at OSH illustrated 2cm pan-
creatic cyst.

Higher Recall would result if the above acronyms were defined by the user analyzing such text.

Allowing users to define their own AAs also provides the ability to override existing Metathesau-
rus strings and thereby customize AA expansions for specific domains. For example, defining 
‘Positron Emitting Tomography’ to be an expansion for ‘PET’ and ‘Computerized Axial Tomog-
raphy’ for ‘CAT’ could be useful in analyzing radiology reports, because doing so would suppress 
the identification of UMLS concepts referring to certain companion animals:
C0031268:Pet (Pet Animal) [Animal]

C1456682:Pets (Pet Health) [Group Attribute]

C0007450:Cat (Felis catus) [Mammal]

C0325090:Cat (Felis silvestris) [Mammal]

C0524517:Cat (Genus Felis) [Mammal]

C0325089:cats (Family Felidae) [Mammal]

Of course identifying the above six feline concepts from ‘CAT’ and ‘PET’ would, conversely, be 
the desired behavior in a veterinary domain.

In order to respect the intentions of the author as reflected in text, author-defined AAs take prece-
dence over any defined by the user. More specifically, if both the author and the user provide 
expansions for the same AA, MetaMap will use the author’s and not the user’s; moreover, if the 
user provides an AA expansion, and the AA itself is part of an author-defined AA expansion, the 
user’s expansion will be ignored. Such conflicts between author- and user-defined AAs should be 
uncommon, because UDAs will probably be most applicable in analyzing clinical text, which 
does not generally contain author-defined AAs, but does typically include idiosyncratic domain-
specific AAs that are defined in neither the text nor the UMLS.

4.1.4.5  Composite Phrases

We noted in Step 1 of Section 4.1.1 that MetaMap’s parser normally divides its input text into dis-
tinct phrases, each of which is analyzed separately. Although this strategy very successfully limits 
MetaMap’s search space, an occasional unfortunate consequence is that input text is broken up 
into phrases that fail to capture larger structures. Consider the text pain on the left side of the 
chest, from which we would like to identify



The NLM Indexing Initiative 15

4.  Methods and Procedures

C0541828:left side chest pain (Left sided chest pain) [Sign or Symptom]

However, the parser divides its input into phrases as follows:

[pain]noun phrase[on the left side]prepositional phrase[of the chest]prepositional phrase

and each phrase is processed separately. In 2011, MetaMap included the implementation of com-
posite phrases, which causes MetaMap to construct longer, composite phrases from the simple 
phrases produced by the parser. A composite phrase consists of

•  a noun, followed by
•  any prepositional phrase, optionally followed by
•  one or more prepositional phrases introduced by of.

The above example will indeed map to the desired concept with the composite phrases option 
enabled, but to separate concepts without it. This option automatically turns on the two other 
options --term_processing and --ignore_word_order, but only during the analysis of any 
constructed composite phrase. Examples of text that would by default be divided into multiple 
phrases, but analyzed as a single phrase with composite phrases on are

•  description from a study of the electron micrographs of thin sections of testis
•  Points in the Technique of the Treatment of Fracture of the Patella
•  increase by enhancement of the rate of synthesis of fatty-acid synthetase

Composite phrases are necessarily longer than non-composite phrases, and their construction will 
invoke more computation; consequently, an observable slowdown may result; however, this 
option might prove useful for users who prefer mapping to longer, pre-coordinated concepts.

4.1.4.6  Lexicon Access Modernization

We are currently performing acceptance testing of the Java-based lexAccess libraries, which we 
hope will replace legacy ‘C’ lexicon-access code that is outdated and has proved to be unmain-
tainable. Once we are satisfied with the results from lexAccess, the next step will be performance 
tuning, because lexAccess has thus far approximately tripled MetaMap’s run time, which is 
clearly undesirable.

4.2  The NLM Medical Text Indexer (MTI)
The NLM Medical Text Indexer (MTI) system (Aronson et al., 2004) is the primary product and 
focus of the Indexing Initiative (Aronson et al., 2000). MTI produces both semi- and fully-auto-
mated indexing recommendations based on the Medical Subject Headings (MeSH) controlled 
vocabulary (MeSH, 2012) and has been in use at NLM since 2002. MTI is in daily use to assist 
Indexers, Catalogers, and NLM’s History of Medicine Division (HMD) in their indexing efforts. 
Every weeknight MTI provides recommendations for 3,600 new citations for Indexing and pro-
cesses a mixed file of approximately 7,000 old and new records for both Cataloging and HMD. 
MTI was also used on a regular basis between 2002 and 2012 to provide fully-automated keyword 
indexing for NLM’s Gateway (NLM Gateway, 2012) meeting abstract collection, which was not 
manually indexed. MEDLINE Indexers and Revisers consult MTI recommendations for approxi-
mately 50% of the articles they index, and the MTI recommendations are tightly integrated into 
the Cataloging and HMD system. Although mainly used in indexing efforts for processing MED-
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LINE formatted citations (MEDLINE DTD, 2012) consisting of identifier, title, and abstract, MTI 
is also capable of processing arbitrary biomedical text.

4.2.1  Processing Overview
The Indexing Initiative explored several indexing methods (Aronson et al., 2000) eventually 
implementing two of the best ones as a prototype indexing system which became the Medical 
Text Indexer (MTI). Normal MTI processing involves receiving a daily XML formatted MED-
LINE (MEDLINE XML, 2012) file which contains a list of Completed, In-Process, and In-Data-
Review citations and a list of Deleted PMIDs. All processing is done offline, and the MTI results 
are then stored in a database for later use by the Indexers. This preloading of the results is neces-
sary since MTI takes too long to be done in real time for the Indexers. Figure 6 depicts the pro-
cessing flow as MEDLINE citations are processed through the various components of the MTI 
system. Each of the major MTI components is described briefly below.

Figure 6.  The Medical Text Indexer (MTI) System

MetaMap Indexing (MMI): (Aronson, 1997) a method that applies a ranking function to con-
cepts found by MetaMap (Aronson and Lang, 2010). Generally speaking, the MMI ranking func-
tion was designed to indicate the characterizing power or “aboutness” of a given concept for a 
piece of text, e.g., a MEDLINE citation. It is the product of a frequency factor and a relevance 
factor, which is essentially measured by MeSH Tree depth. For concepts found in the title of the 
citation, there is a simplified form of the function which maximizes the frequency factor. 
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PubMed Related Citations: (Wilbur, 2012) the neighbors of a document are those documents in 
the database that are the most similar to it. The similarity between documents is measured by the 
words they have in common, with some adjustment for document lengths. MTI currently uses two 
methods for determining PubMed Related Citations for the text it is processing. If MTI is working 
with a MEDLINE formatted citation and there are enough indexed PubMed related citations 
defined by the PubMed system (MEDLINE Retrieval, 2012), MTI uses that list of PubMed 
related citations. If MTI is processing free form text or there is an insufficient number of indexed 
PubMed related citations, MTI falls back to the implementation of PubMed Related Citations as 
described in (Wilbur, 2012).

Restrict to MeSH: (Bodenreider et al., 1998) a method which finds the closest MeSH headings 
(MHs) to UMLS Metathesaurus concepts. Three basic approaches can be used to map a UMLS 
term to MeSH: through synonyms, through built-in mappings, and through inter-concept relation-
ships. These approaches can be combined into a strategy that maximizes both specificity (selected 
MeSH terms are relevant) and sensitivity (the number of concepts that fail to be mapped to MeSH 
is small).

Extract MeSH Descriptors: retrieving the MeSH Heading lines from the related PubMed cita-
tions in MEDLINE format and tracking whether the MeSH Heading is a main (starred) term or 
not. Note that MTI does not recommend main vs. non-main status to the Indexers, but the status is 
tracked internally to see if MTI is improving or not.

Clustering and Ranking: (MTI Processing, 2012) the ranked lists of MeSH headings produced 
by all of the methods described so far must be clustered into a single, final list of recommended 
indexing terms. The task here is to provide a weighting of the confidence or strength of belief in 
the assignment, and rank the suggested headings appropriately. 

Post-Processing: once all of the recommendations are ranked and selected, validation of the rec-
ommendations is done based on the targeted end-user. Typically, CheckTags are added based on 
triggers from the text and for the remaining recommended headings, a machine learning algorithm 
is applied adding frequently occurring CheckTags (Jimeno-Yepes et al., 2011c), and then finally 
MTI performs subheading attachment (Névéol et al., 2007a, 2007b, 2007c) to individual headings 
and for the text in general.

Not all citations processed by MTI go through all of the components listed above. MTI has vari-
ous filtering levels and special handling rules which require different processing pathways. Basic 
filtering rules have evolved over time based on ambiguities in the UMLS Metathesaurus, ambigu-
ity in the text, feedback from Indexers, etc. Section 4.2.3 describes some of these basic filtering 
rules, different pre-defined levels of filtering, and some of the special handling that is required of 
citations. But before describing filtering in detail, we provide an example of MTI processing.

4.2.2  An Example
We now give an example of the automatic indexing produced by the current MTI system. Con-
sider the following MEDLINE citation:
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PMID- 9357896   (UI  - 98018928)
Bupivacaine inhibition of L-type calcium current in ventricular cardiomyocytes of hamster.
BACKGROUND: The local anesthetic bupivacaine is cardiotoxic when accidentally injected 
into the circulation. Such cardiotoxicity might involve an inhibition of cardiac L-type Ca2+ cur-
rent (ICa,L). This study was designed to define the mechanism of bupivacaine inhibition of ICa,L.
METHODS: Cardiomyocytes were enzymatically dispersed from hamster ventricles. Certain 
voltage- and time-dependencies of ICa,L were recorded using the whole-cell patch clamp method 
in the presence and absence of different concentrations of bupivacaine.
RESULTS: Bupivacaine, in a concentration-dependent manner (10-300 microM), tonically 
inhibited the peak amplitude of ICa,L. The inhibition was characterized by an increase in the time 
of recovery from inactivation and a negative-voltage shift of the steady-state inactivation curve. 
The inhibition was shown to be voltage-dependent, and the peak amplitude of ICa,L could not be 
restored to control levels by a wash from bupivacaine.
CONCLUSIONS: The inhibition of ICa,L appears, in part, to result from bupivacaine predispos-
ing L-type Ca channels to the inactivated state. Data from washout suggest that there may be two 
mechanisms of inhibition at work. Bupivacaine may bind with low affinity to the Ca channel and 
also affect an unidentified metabolic component that modulates Ca channel function.

Human Indexing MTI Recommendations
Anesthetics, Local/*pharmacology Anesthesia, Local
Animals (CheckTag) Anesthetics, Local/metabolism/pharmacology
Bupivacaine/*pharmacology Animals (CheckTag)
Calcium Channels/*drug effects Bupivacaine/metabolism/pharmacology
Calcium Channels, L-Type Calcium Channel Blockers/metabolism/pharmacology
Cricetinae (i.e., hamsters) (CheckTag) Calcium Channels, L-Type/metabolism
Dose-Response Relationship, Drug Calcium Channels/metabolism/physiology
Heart/*drug effects Calcium/metabolism
Male (CheckTag) Cardiomyocytes/metabolism

Cricetinae (i.e., hamsters) (CheckTag)
Heart
Heart Ventricles/cytology/metabolism
Humans (CheckTag)
Patch-Clamp Techniques

The manual, human indexing for this citation has nine MeSH Headings, three of which are 
CheckTags. In 2008, MTI computed 94 MeSH Headings and presented 25 of them along with two 
CheckTags to the indexer. In 2012, MTI computes 86 MeSH Headings and presents 11 of them 
along with three CheckTags to the indexer. The 0.2198 increase in F1 measure is shown in 
Table 4. Results for both 2008 and 2012 are listed in Table 5 with the CheckTags first followed by 
the MeSH Headings in rank order. MTI (both years) finds five of the six MeSH Headings and two 
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of the three CheckTags; these are highlighted in bold in the table and in the Human Indexing and 
MTI Recommendations above..

Table 4.  MTI Performance Differences: 2008 vs. 2012

2008 2012
Recall (7/9) 0.7778 Recall (7/9): 0.7778 (+0.0000)
Precision (7/27) 0.2593 Precision (7/14) 0.5000 (+0.2407)
F1 0.3889 F1 0.6087 (+0.2198)

This example illustrates why the PubMed Related Citations method contributes so well to MTI. 
The MeSH Headings ‘Calcium Channels’ and ‘Calcium Channels, L-Type’ would not have been 
discovered by MetaMap because they are only identified in the abstract with the use of abbrevia-
tions (Ca channel and L-type Ca channels) which are not found in the UMLS Metathesaurus.

In 2012, MTI now has the ability to add Subheadings both attached to a specific MeSH Heading 
and as a global list of applicable Subheadings. In the 2012 MTI results, ‘pharmacology’ was prop-
erly attached, while ‘metabolism’, which is mentioned in the article, was not used by the human 
indexer due to lack of significance. ‘drug effects’ was identified by MTI as appropriate for the 
article, but it was not able to identify specific MeSH Headings to which it should be assigned.

The 2012 MTI also now uses machine learning algorithms to assist in recommending a small set 
of CheckTags. In this case, ‘Humans’ was assigned incorrectly by the algorithm. But overall, 
machine learning has provided us with a dramatic 0.2831 average increase in F1 measure for a set 
of twelve CheckTags including ‘Humans’.

2008 MTI Recommendations 2012 MTI Recommendations

Rank MeSH Heading MMI PRC Rank MeSH Heading MMI PRC
CT Cricetinae CT Cricetinae
CT Animals CT Animals
1 *Bupivacaine X X CT Humans
2 *Heart Ventricles X X 1 *Bupivacaine/metabolism/

pharmacology
X X

3 *Cardiomyocytes X 2 *Calcium/metabolism X X
4 *Calcium X X 3 *Heart Ventricles/cytology/

metabolism
X X

5 Anesthetics, Local X X 4 Anesthetics, Local/metabo-
lism/pharmacology

X X

6 Calcium Channels X 5 *Cardiomyocytes/metabolism X
7 Heart X X 6 Calcium Channels/metabo-

lism/physiology
X

8 Calcium Channels, L-Type X 7 Heart X X
9 Calcium Channel Blockers X 8 Calcium Channels, L-Type/

metabolism
X

10 Egtazic Acid X 9 Calcium Channel Blockers/
metabolism/pharmacology

X

11 Myocardium X 10 Patch-Clamp Techniques X
12 Tetracaine X 11 Anesthesia, Local X X
13 Calcium Channels, T-Type X

Table 5.  MTI Example Results
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Further analysis of the results shows that MTI produced the following additional useful indexing 
terms:

•  ‘Calcium’: The calcium channels discussion in the citation includes reference to the movement 
of calcium ions across cell membranes; so Calcium/metabolism is a possible heading/subhead-
ing combination;

•  ‘Heart Ventricles’: The ‘Cardiomyocytes’ are taken from the heart ventricle;
•  ‘Calcium Channel Blockers’: In both the title and abstract, it is clearly stated that bupivacaine 

has the action of calcium channel inhibition;
•  ‘Membrane Potentials’: This heading is appropriate for indexing because voltage and voltage 

shift are discussed in the abstract (Note that in the 2012 MTI results, this term is filtered out 
because it only appears in two related citations); and

•  ‘Patch-Clamp Techniques’: This method is also described in the abstract.

4.2.3  MTI Filtering and Post-Processing
MTI has three different levels of filtering which can be selected depending on the circumstances. 
Base Filtering, or High Recall Filtering, is performed for all citations and free text, regardless of 
whether any further filtering has been selected or not. High Recall Filtering is used for MEDLINE 
indexing recommendations and tends to provide a list of approximately 25 recommendations with 
most of the good recommendations near the top of the list. Balanced Recall/Precision Filtering 
provides filtering which looks at the compatibility and context of the recommendations based on 
what path(s) made the recommendation and provides a good balance between number of recom-
mendations and the filtering out of good recommendations. Balanced Recall/Precision Filtering 
was developed for use in the fully-automatic processing of the NLM Gateway abstracts and is 
now used for MTIFL processing (see Section 4.2.4.1 for details). High Precision Filtering is the 
last filtering option and provides the highest level of accuracy by requiring recommendations to 

14 Patch-Clamp Techniques X
15 3-Pyridinecarboxylic acid, 1,4-

dihydro-2,6-dimethyl-5-nitro-
4-(2-(trifluoromethyl)phenyl)-, 
Methyl ester

X

16 Anesthesia, Local X X
17 Ion Channel Gating X
18 Kv Channel-Interacting Pro-

teins
X

19 Shal Potassium Channels X
20 Dibucaine X
21 Membrane Potentials X
22 Calcium Channel Agonists X
23 Lidocaine X
24 Muscle Cells X
25 Procaine X
 Global MTI SH List: cytology, drug effects, metabolism, 

pharmacology, physiology

2008 MTI Recommendations 2012 MTI Recommendations

Table 5.  MTI Example Results
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come from both MetaMap (MMI) and PubMed Related Citations (PRC). This provides a small 
list of quality MTI recommendations while filtering out many good recommendations as well. 
The High Precision Filtering option is not currently used since it provides such a short list of rec-
ommendations. Each of these filtering levels is now described in more detail.

4.2.3.1  High Recall Filtering

High Recall Filtering is designed to provide recommendations biased more towards Recall than 
Precision. The Indexers use the MTI recommendations as a “pick list” where they simply select 
the appropriate recommendations to include, thereby speeding up the indexing process. This 
approach tolerates some incorrect recommendations, but the majority of the recommendations 
need to be accurate. Recent discussions have moved MTI towards a more balanced approach 
where a smaller list of recommendations with a higher Precision is provided, but the list is still 
slightly biased towards Recall.

Terms recommended by both the MetaMap (MMI) and PubMed Related Citations (PRC) paths 
are subjected to a simple triage designed to immediately remove known troublesome terms. For 
example, all CheckTags (CT) are removed from the PRC previously indexed terms so that CTs 
reflect only the final validated list of recommendations. Similarly, all MMI terms generated by 
any acronym/abbreviation of three characters or less are removed because they were triggering 
incorrect MeSH Geographical recommendations (for example, T triggered ‘Texas’ because a vari-
ant of T was TX). MTI also uses a hand-curated list of special cases to remove terms from the 
MMI path due to unfortunate variants, brand names consisting of common words, or ambiguity. 
For example, sealed in the text would trigger the MH ‘Seals, Earless’ because seal is a lexical 
variant of sealed.

The scores of certain types of terms receive additional boosting. At the beginning of each new 
MeSH Indexing year (usually mid-November), all of the new MH are given a special boosting by 
MTI that forces them to be recommended regardless of score. This is done for two reasons: 1) 
since they are new MHs, there will be no history in the PubMed Related Citations which would 
cause an artificial handicapping of the scores, and 2) to help the Indexers who might not be as 
familiar with the new MHs. If a MH is identified as occurring in the title of the citation, its score 
is tripled because terms found in the title tend to be more important. The final boosting rule floats 
chemicals so they appear higher up the list of recommendations and appear next to their Headings 
Mapped To (HM) to make identification for the Indexer easier by changing their score to one 
more than the highest HM associated with the chemical.

Next, substitution of MeSH Subheadings (SH) for certain MHs from a lookup list is done. For 
example, if MTI were going to recommend the MH ‘General Surgery’, it will be changed to the 
SH ‘surgery’. This substitution is done because it follows the standard indexing policy where the 
indexer would use the SH ‘surgery’ in this case to qualify the purpose of the surgery. So, surgery 
(‘General Surgery’) for breast cancer (‘Breast Neoplasms’) becomes ‘Breast Neoplasms/surgery’ 
in the indexing.

A review of the surviving MTI recommendations is done where all recommendations that came 
only from the PRC path with fewer than four of the top 10 related articles providing the term are 
removed. It was noticed that many of the PRC path terms that were incorrect and unrelated to the 
text being processed by MTI had fewer than four related articles.
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Finally, the list is resorted based on the changes made to the scores during filtering.

4.2.3.2  Balanced Recall/Precision Filtering

Balanced Recall/Precision Filtering was designed to mediate between the two main paths, MMI 
and PRC, used in MTI. MMI tends to provide more general terms, while PRC provides more spe-
cific terms which are occasionally completely unrelated to the text being processed due to normal 
variation in related citations. A set of heuristics was developed (MTI Processing, 2012) to balance 
the results from both MMI and PRC by using the context of the terms they each provide. For 
example, one of the heuristics is “Remove any term coming from only the MMI path if either 
MMI or PRC provides a more specific term.” This heuristic uses the context of the provided terms 
and the hierarchy in the MeSH Vocabulary Tree to remove more general terms typically provided 
by MMI. A second heuristic is “Remove any term coming only from the PRC path if MMI has not 
provided a more general term.” Again, this uses the context and MeSH tree structure to identify 
PRC terms that are probably unrelated to the text. By comparing terms provided by the two paths, 
Medium Filtering provides a much smaller list that is more accurate (higher Precision), but still 
contains a reasonable number of accurate terms (acceptable Recall).

4.2.3.3  High Precision Filtering

High Precision Filtering is the simplest filtering approach–it removes any recommendation that 
did not come from both the MMI and PRC paths. This creates a small list of very accurate recom-
mendations but tends to remove many good recommendations along with the bad ones. In some 
cases no recommendations can be made.

4.2.3.4  Post-Processing

Once filtering is accomplished, post-processing is performed regardless of the filtering level used. 
Post-processing involves cleaning up the final recommendation list by removing any terms that 
survived the filtering process but are invalid for the target audience, filling out the list of terms by 
adding CTs, Geographicals, and other MHs based on the text, a machine learning algorithm, and 
lookup lists, and then finally attaching subheadings to the individual MHs and creating a global 
list of subheadings applicable to the text.

The first post-processing step involves identifying the end user so the correct exclusion list can be 
used to remove terms from the recommendation list. There are three distinct exclusion lists used 
by MTI to provide tailored results for Indexing, Cataloging, and HMD. For example, the MH 
‘Academic Dissertations’ is not used by Indexing or Cataloging, but is needed for HMD. The 
Indexing exclusion list is the default used by MTI and contains MHs that are too general to be rec-
ommended or contain “not used for indexing” in the Annotation field of its MeSH record (e.g., the 
general MH ‘Eye Manifestations’ with treecode C11.300 in 2010 MeSH).

The tailored recommendation list and text is then reviewed: CTs, Geographical MHs, and other 
MHs and SHs are added and marked so that they can be displayed as final recommendations. For 
example, if the MH ‘Neonatal Screening’ is being recommended, MTI automatically adds CTs 
‘Humans’ and ‘Infant, Newborn’ if they are not already in the list. If the text contains the word 
Nairobi, the Geographical MH ‘Kenya’ is added to the list if it not already there. A secondary 
check is done for Nairobi to make sure the text is actually about the country Kenya since there is 
also the possibility that the text is referring to ‘Nairobi Sheep’. MTI has a small set of cases like 
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this which require a secondary check before the MH is actually added to the final recommenda-
tion list.

One final class of additions is a “forced list” of triggers whose presence within the text triggers 
one or more MHs. The “forced list” comes mainly from Indexer Feedback that indicated “if you 
see xyz, you should always recommend ‘abc’.” For example, if hiv patient is in the text being pro-
cessed, MTI will always recommend the MH ‘Acquired Immunodeficiency Syndrome’. MTI per-
forms a case-insensitive search of the text for the “forced list” triggers and then adds the MH(s) if 
not already present and sets the “forced” flag that tells MTI to always display the term.

4.2.3.5  Machine Learning Algorithms

In an effort to improve both Recall and Precision on the most frequently used terms in MeSH, we 
selected the top 40 most frequently indexed MHs. Most of these ended up being CTs or MHs that 
MTI treats like a CT (e.g., ‘Swine’). The results of various experiments with machine learning 
provided improvements for twelve of the MHs identified in Table 6. The table shows the CT, F1 
scores prior to and after implementing the machine learning algorithms, and how much of an 
improvement is obtained for each CT. The machine learning algorithms for these twelve MHs 
were incorporated into the MTI processing flow.

Table 6.  CheckTags Before and After Machine Learning Applied

CheckTag F1 prior to ML F1 with ML Improvement

Adolescent 0.2475 0.4236 +0.1761
Adult 0.1949 0.5684 +0.3735
Aged 0.1172 0.5467 +0.4295
Aged, 80 and over 0.0150 0.3089 +0.2939
Child, Preschool 0.0611 0.4540 +0.3929
Female 0.4606 0.7384 +0.2778
Humans 0.7998 0.9133 +0.1135
Infant 0.3439 0.4469 +0.1030
Male 0.3847 0.7114 +0.3267
Middle Aged 0.0101 0.5950 +0.5849
Swine 0.7104 0.7475 +0.0371
Young Adult 0.0283 0.3163 +0.2880

The text of the citation is provided to the machine learning algorithms and a result for each of the 
above twelve MHs is provided stating whether to add the term to the list of MTI recommenda-
tions. Additions are added as “forced” terms meaning that they are guaranteed to be in the MTI 
recommendation list.

4.2.3.6  Subheading Attachment

MTI’s final step in creating its indexing recommendations is to perform subheading attachment 
(Névéol et al., 2007a, 2007b, 2007c). Subheading attachment is currently only done for the Index-
ers since Cataloging and HMD do not utilize subheadings. Due to the complexity of the data 
manipulation required for subheading attachment, it is not supplied as a general option to MTI. 
Subheadings are not attached to every MH recommended by MTI; the subheading attachment 
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algorithms use several linguistic and statistical methods to determine what is appropriate for each 
MH based on the text and which subheadings are allowable for each MH. MeSH specifies a sub-
set of the subheadings that are allowed for each MH, so the subheading attachment algorithms uti-
lize these rules to ensure that non-allowed combinations are not recommended by MTI. Based on 
the results of two user-centered studies (MTI Experiment, 2002; Ruiz and Aronson, 2007), at 
most three subheadings are attached to each MH.

4.2.4  Recent Enhancements to MTI
We now discuss several recent enhancements to MTI. By far the most important of these, the 
treatment of MTI as a first-line indexer, is described in the next section. Instead of the normal use 
of MTI, where an indexer can optionally examine and use MTI’s indexing recommendations, 
MTI’s results are used as if they were created by an indexer; they are then reviewed as most 
indexing is.

The other enhancements described in this section are the use of MTI for Cataloging and the His-
tory of Medicine Division, the creation of an MTI test collection, the ‘MTI Why’ facility and a 
summarization of various MTI customization efforts.

4.2.4.1  MTI First-Line Indexer (MTIFL)

The Index Section implemented MTIFL in February 2011. MTIFL automates the standard index-
ing process, which consists of two steps: 1) indexers assign MeSH to describe the content of an 
article based on a review of the full text, and 2) in-house revisers, senior staff who are expert 
indexers, review and modify the indexing and release it for searching and viewing in PubMed. 
MTIFL uses MTI for the first step of indexing, focusing on only the titles and abstracts. In-house 
revisers continue with the second step, reviewing the MTIFL indexing, adding or deleting MHs, 
and releasing the final indexing to PubMed.

In 2010, the Indexing Initiative team and the Index Section conducted a series of three experi-
ments with MTI. The experiments were designed to determine the feasibility of using MTI recom-
mended MHs as first-line indexing for selected subject areas. Journals for the three experiments 
were chosen from fields where MTI was performing well (for example, Microbiology, Anatomy, 
Botany, and Medical Informatics). The experiments captured the accuracy of MTI indexing and 
the amount of time required to index and revise both the manual and MTI indexing. The results of 
the experiments showed that MTIFL was successful given the right circumstances, namely jour-
nals with a low potential for the need of manually created chemical flags and geneRIFs that are 
normally added by the indexer. In the case of MTIFL, the burden of creating the chemical flags 
and geneRIFs would shift to the reviser which would be time consuming and undesirable. 

Fourteen journals were initially selected to be included in the MTIFL pilot, and nine journals have 
been added since; and the process of evaluating additional journals for inclusion in the MTIFL 
project is ongoing. One outcome of the MTIFL experiments was the realization that it took index-
ers longer to remove wrong MTI recommendations than to add missing ones. So, MTIFL journals 
are processed with MTI’s Balanced Recall/Precision Filtering option providing a smaller, more 
precise indexing list than with the regular processing. The average F1 measure increases by 
0.2083 when journals are incorporated into the MTIFL program due to this extra filtering and 
indexing policies specific to MTIFL.
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4.2.4.2  Assisted Indexing for Cataloging and History of Medicine

This description of MTI has centered on the use of MTI by the MEDLINE Indexers in Library 
Operations because that was the original use case for MTI; however, MTI is also used by both 
Cataloging and NLM's History of Medicine Division (HMD) on a daily basis. Throughout this 
document we have referenced some of the minor changes that were needed in order for MTI to 
support both of these groups: 1) creation of separate exclusion lists to support each groups index-
ing role, 2) creation of an interface allowing integration into their existing system and providing 
all of the abilities to determine why a recommendation was made and where the recommendation 
came from in the text, and 3) utilization and expansion of the Library of Congress Subject Head-
ings mapping to MeSH list from Northwestern University (LCH MeSH, 2012) to augment the 
MTI recommendations being made.

Both Cataloging and History of Medicine inherited the functionality developed for Library Oper-
ations, but we worked with the other groups to provide a tailored view of MTI specific to their 
needs and work flow without having to create and maintain completely separate versions of MTI.

4.2.4.3  MTI Explanation Facility (MTI Why) 

The MTI Explanation Facility (MTI Why) website (MTI Why, 2012) was designed to provide the 
details behind all of the recommendations MTI makes for a given citation. The MTI Why website 
also provides an environment in which users have access to all available resources for evaluating 
MTI recommendations. MTI Why provides a richer set of details for MetaMap recommendations 
than with PubMed Related Citations because it is closely based on citation text.

Highlights of the MTI Why website include:

•  All words and phrases in the citation participating in the MTI recommendations are highlighted
•  All new MeSH terms are highlighted in the recommendation list
•  Access to MeSH Browser information on all MTI recommendations
•  Access to all PubMed Related Citations for the citation
•  Detailed information on why MTI recommended the terms that it did
•  Information on when MTI processed the citation, what version of MeSH was used, and what 

version of PubMed Related Citations was used
•  Small Interactive MTI queries can be ran directly from the MTI Why page
•  Feedback on the current citation can be made easily and conveniently by select the rotating 

“Feedback” icon.

Figure 7 shows an MTI Why web page after a PMID has been selected. The top of the page 
details when the citation was processed by MTI, what version of MeSH was used, and what ver-
sion of PubMed Related Citations (PRC) was used. Below this, on the left-hand side are all of the 
MTI recommendations with the CTs highlighted at the top, and the actual citation on the right-
hand side. All of the words and phrases involved in the MTI recommendations are highlighted 
using coloring and underlining. At the bottom of the page, the detailed explanation information 
appears.



Figure 7.  ‘MTI Why’ Screen Capture
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4.2.4.4  Customizing MTI

Over the years, MTI has been used to index everything from web pages to academic course 
descriptions to 500-page congressional reports with mixed success. We discovered during these 
attempts that MTI is very flexible and fairly easy to customize. MTI was originally designed to 
create MeSH recommendations for Indexing and then expanded to provide recommendations for 
Cataloging, and then HMD. This required several changes to the final results because, for exam-
ple, Indexing does not use Publication Types and some other MHs, Cataloging and HMD both use 
Publication Types, but not the “as Topic” MHs, and HMD uses some Publication Types that Cata-
loging does not use. These changes required only a simple change to MTI resulting in three differ-
ent exclusion files. For the Medical NLP Challenge (Aronson et al., 2007), MTI was required to 
process clinical history and radiology reports instead of MEDLINE citations, and provide ICD-9-
CM (International Classification of Diseases, 9th Revision, Clinical Modification) codes instead 
of MHs as recommendations. Almost all of the changes were easily made to the environment that 
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MTI uses and not to the MTI system itself, showing that MTI is fundamentally sound and quite 
easily adaptable.

4.2.5  Improving MTI Performance using Machine Learning
Among the results from MTI, there are some MeSH headings for which MTI performs poorly. We 
have performed machine learning experiments to improve results for such MeSH headings in part 
because there is a large set of MEDLINE examples which might be used as training and test data.

As background for these experiments, we note that the task of indexing documents has already 
been considered as a text categorization task in the literature, and the fact that MEDLINE cita-
tions are characterized by their assigned MeSH Headings makes it an attractive source of data for 
exploration. Some issues with machine learning are common to text categorization approaches. 
For instance, the training examples are very imbalanced with few positive examples; e.g. in our 
experiments we found 3,000 citations indexed with ‘Acute Disease’ out of 400,000. In addition, a 
term mentioned in an article does not always indicate relevance for indexing. Furthermore, there 
are inconsistencies due to changes in indexing policy over time which might not be reflected in 
already indexed publications, and automatic indexing relies only on titles and abstracts, which 
offers a limited view of the citation compared to the full text available to indexers.

4.2.5.1  Bottom-up approach to MeSH indexing

In this first machine learning approach, we combined the development of indexing rules based on 
term selection (see Figure 8) and manual inspection with machine learning to deal with difficult 
indexing examples. We also studied the filtering of false positives based on machine learning. A 
model is learned for each MeSH heading under study to determine if citations should be indexed 
with that MeSH heading or not. 

Training citations are used to derive a set of terms based on Latent Dirichlet Allocation. (Blei et 
al., 2003). Citations are grouped into topics, and the terms with the highest probability in the top-
ics are selected. Citations are represented using this set of features. Decision trees based on this 
representation and the common sections are considered for manual revision. We expect that the 
distilled indexing rules will provide higher Recall but probably low Precision.

Figure 8.  Term selection pipeline

We have evaluated several learning algorithms to further filter MeSH headings. Among these 
algorithms we have considered standard machine learning approaches. In addition, we have eval-
uated several representations of the data like bigrams and removal of noisy examples.
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Initial experiments with the ‘Carbohydrate Sequence’ MeSH Heading (Jimeno-Yepes et al., 
2011b) indicate an increase in Recall compared to initial MTI results. Several rules are derived 
that provide an indexing of citations with this MeSH heading. Machine learning post filtering did 
not improve the result obtained with the developed indexing rules.

In Table 7 we present results for additional MeSH Headings (Jimeno-Yepes et al., 2012). MTI 
results are compared to the post-filtering based on machine learning, the Recall rules prepared 
with using the methods explained above and the post-filtering based on machine learning. Only 
the results of the best learning algorithm are shown in each post-filtering experiment.

Table 7.  Bottom-up approach results

MH Method Precision Recall F1

Acute Disease

MTI 0.2664 0.1580 0.1984
MTI+Filtering 0.4272 0.1395 0.2103
Recall rules 0.1176 0.8562 0.2068
RecRul+Filtering 0.1941 0.6611 0.3001

Gene Expression

MTI 0.1958 0.2712 0.2274
MTI+Filtering 0.2642 0.1389 0.1896
Recall rules 0.0645 0.8165 0.1195
RecRul+Filtering 0.1130 0.5220 0.1858

Health Services

MTI 0.1810 0.3533 0.2394
MTI+Filtering 0.2636 0.2387 0.2505
Recall rules 0.0169 0.6293 0.0329
RecRul+Filtering 0.0723 0.3547 0.1201

Hormones

MTI 0.0726 0.4000 0.1229
MTI+Filtering 0.1310 0.2800 0.1785
Recall rules 0.0328 0.6311 0.0624
RecRul+Filtering 0.0839 0.3600 0.1361

Infection

MTI 0.0649 0.4013 0.1117
MTI+Filtering 0.1568 0.2492 0.1925
Recall rules 0.0048 0.7767 0.0095
RecRul+Filtering 0.0216 0.4660 0.0412

RTPCR

MTI 0.2790 0.3738 0.3213
MTI+Filtering 0.5316 0.3038 0.3879
Recall rules 0.0931 0.7191 0.1648
RecRul+Filtering 0.2048 0.4863 0.2883

The experiments show that there is no single method which consistently produces superior perfor-
mance over the other indexing methods. In order to deal with a large number of MeSH heading 
examples, we are studying the automatic selection of indexing algorithms based on meta-learning.

4.2.5.2  Automatic selection of indexing method through meta-learning

Meta-learning seeks to learn how data characteristics relate to algorithm characteristics. Our goal 
is to select the best algorithm and parameters for recommending indexing terms for MEDLINE 
citations. For these experiments, we have used a data set of 300,000 MEDLINE citations. From 
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this data set, the first 200,000 (sorted by date) were used for training/validation while the last 
100,000 were used for testing. Steps to select the best algorithm A for MeSH term M are:

1.  If required, train algorithm A using the training set. The positive examples are the citations 
indexed with the heading M.

2.  Use algorithm A to assign heading M to citations in the validation set.
3.  Compute F1-score, comparing the indexing produced in Step 2 to the current best indexing for 

the validation set.
4.  Store the best method in a mapping table. For machine learning methods, the trained model is 

also stored.
During testing or indexing, the mapping table prepared during training is used to index citations. 
For each citation and for each heading M, look in the mapping table for the best algorithm, and 
then determine if the citation should be indexed with M. Although this process is slow for a large 
number of indexing terms or a large number of citations, speeding up the indexing process is pos-
sible based on batch indexing of the citations followed by post-processing of the outcome. In 
addition, only a limited number of citations need to be processed overnight, usually on the order 
of few thousand.

The indexing algorithms tested include machine learning algorithms such as Naïve Bayes, Roc-
chio and AdaBoostM1 but other approaches as well that do not require training, e.g., MTI and 
dictionary look-up. A combination of these approaches based on voting allows us to combine the 
algorithms into a more complex hypothesis space.

We have performed experiments on two data sets from the 2011 MEDLINE Baseline. In the first 
set, all available MeSH headings are considered. In the second, the experiments are performed on 
a set of MeSH headings called CheckTags .

In Table 8, focusing on the first set, we show that overall we were able to automatically identify 
indexing methods with performance superior to MTI (Jimeno-Yepes et al., 2011c). In these exper-
iments, AdaBoostM1 was not included due to its training cost.

Table 8.  Results of MTI and Meta-learning for 2,712 MHs

Overall
MH 

count Micro P Micro R Micro F1 Macro P Macro R Macro F1

Meta-learning 2,712 0.4319 0.5952 0.5005 0.5690 0.5589 0.5639
MTI 2,712 0.5211 0.4002 0.4527 0.4927 0.5850 0.5349

Results for the experiments with the second, reduce set, are shown in Table 9.

Table 9.  Results of MTI and Meta-learning for the CT set

Methods Micro P Micro R Micro F1 Macro P Macro R Macro F1

Meta-learning 0.7151 0.7157 0.7154 0.5549 0.5236 0.5387
MTI 0.8283 0.3989 0.5385 0.4884 0.3567 0.4123
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The software used in the meta-learning experiments is available as MTI ML (see the Appendix, 
Section 12.2). This package provides machine learning algorithms optimized for large text cate-
gorization tasks and is able to combine several text categorization solutions. The advantages of 
this package compared to existing approaches are: 1) its speed, 2) its ability to work with a large 
number of categorization problems, and 3) its ability to compare several text categorization tools 
based on meta-learning. The website describes how to download, install and run MTI ML. An 
example data set is provided to verify the installation of the package, which has been tested under 
major platforms; i.e. Linux, Windows XP/7 and Mac OS X.

4.3  Availability of Indexing Initiative Tools
In response to user requests, we have implemented a variety of access methods for both internal 
and external users of our NLP applications, MetaMap and MTI; these mechanisms include Inter-
net-based services and publicly downloadable user-installable packages. The access methods are 
shown pictorially in Figure 9 and are described below. In addition, we list 2011 web access statis-
tics for an even broader class of II tools in the Appendix (Section 12.3).

Figure 9.  Access Methods for II Tools

 

Our Internet-based services shown in the lower half of Figure 9 provide interactive and batch 
access to MetaMap and MTI via web browsers and a networked API (Application Programming 
Interface) referred to as the SKR Web API. The web-based interactive facility allows users to 
experiment with various processing options and receive results very quickly after running limited 
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amounts of text through MetaMap or MTI. In contrast, our web-based batch facility runs large 
amounts of text (e.g., thousands of MEDLINE citations or clinical notes) through our applications 
using our Job Scheduler, which distributes its workload across computational resources currently 
consisting of 122 clients.

Users preferring to access our applications programatically (i.e., not through a web browser) can 
use our SKR Web API to submit either interactive or batch jobs to our applications. The user’s 
data are sent to the SKR website where they are processed and then returned to the user’s program 
requesting the service.

We also provide a publicly downloadable and user-installable version of MetaMap (shown in the 
upper half of Figure 9) for users needing to run MetaMap on their own machines or wanting to 
use a custom-crafted data set not provided by NLM. This publicly downloadable version of Meta-
Map is available for Linux, Mac OS/X, and Windows XP/7 platforms, and is particularly useful 
for analyzing data containing Personally Identifiable Information (PII) or otherwise sensitive 
information that cannot be transferred to NLM servers. Note that while the Linux and Mac OS/X 
versions of MetaMap have been available for some time, the Windows XP/7 version of MetaMap 
was only recently released; given the difficulty in producing software in Windows environments, 
it represents a significant accomplishment and a welcome advance in availability of II tools.

In addition to the MetaMap application itself, two APIs are available for use with a locally 
installed version of MetaMap: the MetaMap Java API and the MetaMap UIMA Wrapper. The 
MetaMap Java API was implemented in response to user requests for a Java-compatible inter-
face to the downloadable version of MetaMap; this functionality is similar to that previously pro-
vided by MMTx, a now-unsupported and unsuccessful attempt at replicating MetaMap’s 
functionality in Java. This API consists of a Java client library callable by Java programs, which 
communicate with a Prolog server that includes MetaMap. The client and server components can 
run on the same or different computers on users’ local networks.

The MetaMap UIMA Wrapper encodes MetaMap results into a form usable by the UIMA 
(Unstructured Information Management Architecture) framework, thereby allowing the down-
loaded version of MetaMap to be included in users’ UIMA processing flows, and is based on the 
MetaMap UIMA Wrapper authored by Kai Schlamp (Schlamp, 2012).

Finally, we provide via our Data File Builder (DFB) suite the ability to custom-craft specialized 
data models. Although MetaMap by default identifies concepts in the UMLS Metathesaurus, our 
algorithms are domain independent, and can therefore be successfully applied to any field of 
inquiry, given sufficiently rich knowledge sources. Creating such knowledge sources is the 
accomplished via DFB, which allows users to create special-purpose data sets based on the 
UMLS, or even on altogether different thesauri or ontologies.

4.4  Research and Outreach Efforts
The Indexing Initiative has been involved in many research and outreach efforts over the years. 
We highlight here some recent, largely ongoing efforts of both kinds. A more comprehensive list 
of people who have visited us as part of the Medical Informatics Training Program is given in the 
Appendix (see Section 12.4).
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4.4.1  Research Fellows
Recent Fellows include Antonio J. Jimeno-Yepes, a Postdoctoral Fellow who has been at NLM 
for two years. We have also contributed to research efforts of two NLM Associate Fellows, J. 
Caitlin Sticco and Kristen Greenland.

Some highlights of Dr. Jimeno-Yepes’ research with Indexing Initiative staff was described earlier 
in the subsection of Section 4.1.2 devoted to knowledge-based word sense disambiguation (WSD) 
and in Section 4.2.5 describing machine learning experiments devoted to improving MTI results.

We contributed to J. Caitlin Sticco’s project to develop the Gene Indexing Assistant (GIA), a pro-
totype application for partially automated gene indexing (see Figure 10).

Figure 10.  GIA System Diagram

 The purpose of GIA is to 

assist MEDLINE indexers in creating geneRIFs (Gene Reference Into Function) are concise 
entries in an Entrez Gene record that summarize novel information about the gene function or 
structure. A geneRIF consists of a link from Entrez Gene to a MEDLINE citation along with a 
brief description of the gene function or structure discussed in the citation. GIA consists of several 
modules:

•  a Citation Filter to discover MEDLINE citations appropriate for geneRIF assignment;
•  a Gene Mention Identification module to detect gene mentions in citations;
•  a Gene Mention Normalization module to map gene mentions to Entrez Gene entries; and
•  a GeneRIF Extraction module to recommend citation text as possible geneRIF descriptions.

The GIA prototype was so successful that it is being incorporated into the MEDLINE indexing 
process. GIA is also being refined to improve performance as well as being extended to handle 
non-human species.
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We also contributed to Kristen Greenland’s project of reviewing the indexing of commentaries, 
i.e., articles that comment on existing articles in MEDLINE. As a result of this project, the deci-
sion was made to automatically assign the existing indexing of an article to a comment on article. 
Avoiding the subsequent indexing is estimated to save the library approximately $290,000 a year 
in indexing costs.

4.4.2  External Collaboration
Outside of NLM we have collaborated with researchers at IBM’s Watson Research Center at 
Yorktown Heights, NY, and the Division of Cancer Control and Population Sciences at NIH’s 
National Cancer Institute (NCI).

The IBM DeepQA group has begun an effort to apply the technology they developed to create 
Watson, a program that plays Jeopardy well enough to defeat human champions in live competi-
tion, to the health care arena focusing on diagnosis. As part of this new health care effort, IBM is 
using MetaMap to extract concepts from clinical text. We have been collaborating with them by 
correcting problems specific to their work as well as providing versions of MetaMap and its APIs 
to them in a timely fashion before general release to the public.

The NCI group has undertaken a project to develop a knowledge base of the biomedical literature 
dealing with cancer epidemiology. They had already developed PubMed searches to find this 
body of literature when they contacted us to determine if we could improve the accuracy of the 
searches. We have applied machine learning techniques to assess the search results and have 
enlisted the aid of a colleague in the Index Section to address the problem by modifying the 
searches themselves. Although the collaboration is in its infancy, the assembled researchers are 
exploring several interesting tasks, and we look forward to further collaboration and a successful 
outcome.

4.4.3  Data Dissemination
A natural outcome of internal II research and various collaborations has been the production of 
biomedical data of various sorts. One example of this is the MEDLINE Baseline Repository, 
which consists of summary statistics and other data extracted from MEDLINE Baselines. It also 
includes a facility for extracting static subsets of a Baseline for retrieval experiments. Other 
examples of II data include various test collections: a geneRIF Test Collection and a few WSD 
test collections. All of these data sources are available for dissemination to the biomedical infor-
matics community (see the Appendix, Section 12.2), and each is described below.

4.4.3.1  The MEDLINE Baseline Repository

NLM's MEDLINE/PubMed database of bibliographic citations is a very dynamic reflection of the 
biomedical literature. It experiences daily additions, deletions, and revisions as well as annual 
maintenance referred to as Year-End Processing. Certain research endeavors requiring reproduc-
ibility need to be insulated from this changing environment. The MEDLINE/PubMed Baseline 
Repository (MBR) and MBR Query Tool were developed to generate static, historical subsets of 
MEDLINE/PubMed to satisfy this requirement via a simple, convenient web interface. In addi-
tion to storing the MEDLINE/PubMed Baselines for years 2002 through 2012, the MBR also 
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includes related data such as the corresponding annual MeSH files to further enhance experimen-
tal reproducibility.

4.4.3.2  Test Collections

Gene Reference Into Function (geneRIF) Test Collection: This test collection is used in our 
Gene Indexing Assistant (GIA) project. The GIA corpus consists of 151 manually annotated 
MEDLINE citations, randomly extracted from journals on human genetics with publication dates 
between 2002 to 2011. Sentences in each abstract were detected and tokenized using MetaMap. 
All sentences were processed by our Gene Mention Identification module to tag gene mentions, 
and then corrected manually by a single annotator. Explicit mentions of individual genes or gene 
products are normalized to the relevant Entrez Gene ID. In cases where an individual gene is indi-
cated, but the annotator was unable to determine which Entrez Gene ID was correct, the ID has 
been identified as ‘-1’. For compound mentions, the extent of each mention is marked as the 
information required to identify the gene. For example, for BRCA1/2, two gene mentions would 
be delineated as ‘BRCA1’ and ‘BRCA1/2’. Proteins that refer to multiple genes, or mentions of 
protein families, are not annotated.

Original WSD Test Collection: This test collection consists of 50 highly frequent ambiguous 
UMLS concepts from 1998 MEDLINE citations. Each of the 50 ambiguous cases has 100 ambig-
uous instances randomly selected from the citations for a total of 5,000 instances. We had a total 
of 11 evaluators of whom 8 completed the full set of instances. Disagreements were settled in 
meetings among the evaluators.

WSD Choices Linked to UMLS CUIs: Bridget McInnes and Mark Stevenson have kindly pro-
vided us with matchups between the various WSD ambiguity choices from the Original WSD Test 
Collection and their corresponding CUIs in subsequent UMLS releases. Bridget is responsible for 
the 1999 mappings and Mark is responsible for the 2007AB UMLS mappings.

The MSH WSD Test Collection: Antonio Jimeno-Yepes, Bridget McInnes, and Alan Aronson 
have provided us with this test collection. Evaluation of WSD in the biomedical domain is diffi-
cult because the available resources are either too small or too focused on specific types of entities 
(e.g. diseases or genes). We have developed a method that can be used to automatically develop a 
WSD test collection using the UMLS Metathesaurus and the MeSH indexing in MEDLINE. The 
resulting MSH WSD test collection consists of 106 ambiguous abbreviations, 88 ambiguous 
terms and 9 which are a combination of both, for a total of 203 ambiguous words. Each instance 
containing the ambiguous word was assigned a CUI from the 2009AB version of the UMLS. For 
each ambiguous term/abbreviation, the data set contains a maximum of 100 instances per sense 
obtained from MEDLINE, totaling 37,888 ambiguity cases in 37,090 MEDLINE citations.

4.4.4  Biomedical NLP Challenges
Beginning in 2003 with the Text REtrieval Conference’s (TREC) first domain-specific track, the 
Genomics Track, NLM has participated in several NLP challenges consisting of tasks involving 
biomedical text. NLM’s teams in these challenges have generally included several NLM research-
ers as well as visiting researchers to NLM; in particular, at least two II researchers have partici-
pated in each challenge.
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4.4.4.1  TREC Challenges

The Genomics Track had one of the highest participation rates at TREC for the five years, 2003 - 
2007, it existed. Throughout that time, track tasks ranged from extracting geneRIF text from 
MEDLINE documents to ad hoc retrieval of biomedical documents to more complicated question 
answering tasks. The NLM team consistently produced results among the best of those submitted; 
in particular, NLM produced the top two scoring runs for the final year’s single, ad hoc retrieval/
question answering task. NLM’s success was partly due to our heavy reliance on NLM resources 
such as the UMLS, MetaMap and Essie, a UMLS-cognizant search engine developed at NLM for 
the ClinicalTrials.gov project. NLM’s participation in the Genomics Track, both as a provider of 
MEDLINE documents and as a participant in the challenge itself, resulted in highly favorable 
exposure within the Information Retrieval (IR) community of NLM’s resources, especially the 
UMLS Metathesaurus.

After a brief hiatus, NLM participated in 2011 in the new TREC-med Track devoted to issues 
focused on medical records. The single task for the track’s first year was a variant of ad hoc 
retrieval in which deidentified medical records were searched to identify possible cohorts for 
comparative effectiveness research. Given the medical background and extensive experience with 
medical records of some NLM team members, it is not surprising that NLM’s run consisting of 
results for manually constructed queries was the top performing submission for the track.

4.4.4.2  i2b2 Challenges

NLM participated in the third and fourth Informatics for Integrating Biology & the Bedside (i2b2) 
Shared-Task Challenges in 2009 and 2010. The third i2b2 challenge involved extracting drug 
mentions from deidentified discharge summaries, and the fourth challenge consisted of three 
extraction tasks over the same data: (1) extraction of medical problems, tests and treatments; (2) 
classification of assertions made about medical problems; and (3) relations among the medical 
problems, tests and treatments. NLM’s performance on the i2b2 challenges was somewhat mixed. 
It is noteworthy, however, that our drug mention extraction results were the best of those teams 
not having a mature system as the basis for their methodology.

4.4.4.3  The Medical NLP Challenge

The 2007 Medical NLP Challenge was sponsored by a number of groups including the Computa-
tional Medicine Center (CMC) at the Cincinnati Children’s Hospital Medical Center. The Chal-
lenge was to assign ICD-9-CM (International Classification of Diseases, 9th Revision, Clinical 
Modification) codes to anonymized clinical history and impression sections of radiology reports. 
One of the methods employed by the NLM team was based on a modified version of MTI which 
produced ICD-9-CM codes instead of MeSH headings (Aronson et al., 2007). Besides the modi-
fied MTI, the NLM approach to the Challenge included Support Vector Machines (SVM), k-
Nearest Neighbors (k-NN) and a simple pattern-matching method. The results from the basic 
methods were combined using a fusion algorithm that is a variant of stacking (Ting and Witten, 
1997). The fusion approach produced results which were among the top group of statistically 
indistinguishable results.
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5.  Evaluation Plan
Evaluation constitutes an integral part of the research supporting the development of automated 
methods for assigning indexing terms to MEDLINE abstracts. The evaluation methodologies 
being pursued within the Indexing Initiative adhere to standard practice in information retrieval 
(IR) research (Cleverdon, Mills, and Keen, 1966; Sparck Jones, 1981; Tague-Sutcliffe, 1992). 
However, the ultimate goal of any Information Retrieval (IR) system is user satisfaction. The 
complex interaction of the many constituent components in such a system makes it challenging to 
assess precisely the effect of any one of these components on overall success (Soergel, 1994). 
Therefore, multiple types of evaluation (Saracevic, 1995) are required in order to determine the 
likely effect of the changes being pursued in the Indexing Initiative.

Three specific forms of evaluation are described below: user-centered evaluation in Section 5.1, 
retrieval-based evaluation in Section 5.2 and indexing-based evaluation in Section 5.3. While we 
rely primarily on indexing-based evaluation to assess progress within the project, we have also 
benefitted well from our earlier user-centered and retrieval-based studies.

5.1  User-centered Evaluation
As noted above, the ultimate goal of any Information Retrieval (IR) system is user satisfaction, 
regardless of the underlying technology. Such satisfaction is determined by numerous factors 
beyond the technical ability of a system to deliver topically relevant documents. The conclusion 
reached by many investigators is that a more user-oriented notion of retrieval system evaluation is 
needed in order to address these issues (Harman, 1992; Su, 1992; and Gluck, 1996); indeed, 
recent system development in IR is often assessed with the user in mind (Jose, Furner, and Harper, 
1998, for example).

Early discussions in the Indexing Initiative considered possible approaches to the design of a user-
oriented evaluation study. Several studies serve as a guide in this regard. Hersh, Pentecost, and 
Hickam (1996) report on an interesting, task-oriented evaluation strategy in a biomedical setting, 
which focuses on the user’s information need. Methodologies are being developed in the context 
of the TREC experiments (Beaulieu, Robertson, and Rasmussen 1996) which provide a means of 
accommodating the user in formal IR experiments. Surveys of the type reported in Lindberg et al. 
(1993b) can provide valuable insight into the impact that an IR system has on the professional 
activities of users.

We completed a user-centered study of MTI designed to elicit indexers’ reaction to MTI (Ruiz 
and Aronson, 2007). The study was conducted from July 1st to August 30th 2007 and included 
on-line surveys as well as face to face interviews. All indexers (in house as well as contract index-
ers) were invited to take part in this study. 48 (37.8%) completed the on-line survey out of the 127 
indexers contacted via e-mail. A total of 7 indexers participated in the individual interviews. 
Responders included indexers with different levels of experience (from novice to experts) and 
years of service (zero to more than 25 years). Half of the responders had been working as indexers 
for eight years or less.

In general, survey responders gave a significant amount of feedback with respect to both the 
mechanics of system interaction as well as MTI’s recommendations, themselves. Many of the 
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suggestions have already been implemented, and others will be used as the basis for future 
improvements to MTI from the perspective of indexer usability.

5.2  Retrieval-based Evaluation
Retrieval-based evaluation is traditional in the IR field (Salton, 1992) and is reasonably well 
understood. Furthermore, the results do not depend on specific indexing terms as is the case with 
indexing-based evaluation. However, a test collection with relevance judgments is needed.

In order to mitigate the effects of bias in any one collection, we use three small (Schuyler, 
McCray, and Schoolman, 1989; Hersh, Hickam, Haynes, and McKibbon, 1994; Wilbur, 1996) 
and two large (Hersh, Buckley, Leone, and Hickam, 1994; Bean et al., 1999) test collections for 
our retrieval-based evaluation. All five collections consist of queries with associated relevant 
MEDLINE citations. The three small collections contain roughly 3,000 documents each, while 
the large ones consist of more than 300,000 citations each.

Several years ago we did a study designed in part to compare automatically generated MTI index-
ing recommendations with official MEDLINE indexing in a retrieval experiment (Kim et al., 
2001). We used three MEDLINE test collections mentioned above: Hersh’s large and small col-
lections and a variant of Wilbur’s test collection. For each of these test collections, we performed 
retrieval experiments using either MTI recommendations or MEDLINE indexing with and with-
out the text of the titles and abstracts in the documents. Including the title and abstract text always 
improved results significantly. The best results were generally achieved using MEDLINE index-
ing with text, but MTI recommendations with text did almost as well and actually exceeded the 
MEDLINE indexing result in one case. However, there was no statistically significant difference 
in results for MTI vs. MEDLINE. These results, although gratifying, must be interpreted with 
caution. First, the test collection relevance judgements were based on the MEDLINE citation and 
consequently might well favor a system like MTI that also relies only on the citation. Second, our 
intuition is that MEDLINE indexing represents a more coherent summary of a document than 
MTI recommendations. It is therefore possible that a human searcher would achieve a more satis-
factory result using MEDLINE indexing in an interactive retrieval session than would be obtained 
using MTI recommendations.

5.3  Indexing-based Evaluation
Indexing-based evaluation is conceptually straightforward and is relatively easy to implement. 
For each abstract under consideration, MTI’s recommendations are compared via exact match to 
the MeSH terms assigned by human indexers. The central weakness underlying such evaluation is 
the assumption that the MeSH terms assigned by humans are uniquely optimal for representing 
the content of the relevant document. A set of terms other than the human-assigned MeSH terms 
may be equally effective with respect to retrieval. Some IR experiments have shown that MTI’s 
recommendations produce retrieval results that are almost as good as that produced by human 
indexing (Kim et al., 2001). Nevertheless, current MeSH indexing constitutes a known standard 
against which to judge progress for MTI.

A second issue with the exact match approach we currently use for indexing-based evaluation is 
that some MTI terms that do not exactly match the humanly assigned terms are nonetheless 
semantically close to them. Indeed, recent experiments have shown the usefulness of semantic 
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similarity for evaluating MTI’s effectiveness by allowing for a more relaxed comparison with 
gold standard results (Névéol et al., 2006). While such a relaxed approach would certainly result 
in higher absolute performance scores, it is quite likely that relative differences would be similar 
to the results obtained for exact matches. Therefore, we continue to use exact matches to measure 
system performance.

In order to facilitate indexing-based evaluation of MTI whenever changes to it are proposed, we 
have developed a test collection consisting of approximately 85,000 Medline citations. Care is 
taken to ensure that the make-up of the test collection is similar to what is found in the normal 
processing with respect to the breakdown of Title only citations versus citations with both Title 
and Abstract. This data set is completely changed each year in January to reduce the possibility of 
overtraining on the same data. After major changes are made to the MTI program or lookup 
tables, the test collection is processed and the results are evaluated before any changes are moved 
into production. The test collection is also used to evaluate different filtering options and potential 
changes to MetaMap being researched.

In addition, monthly meetings are held to review how well MTI is performing and to discuss any 
questions or problems that may have arisen. During these monthly MTI meetings, in-depth statis-
tics covering MeSH Headings, Subheadings, Journals, and other indexing features are provided in 
an attempt to analyze where MTI is providing false positives or bad recommendations. Figure 11

Figure 11.  MTI Performance from 2008 to Present

 

represents Precision, Recall, and F1 statistics over the last three years for MTI. Steady growth is 
shown through July 2010 with a slight dip in August 2010 when the method of calculating the sta-
tistics changed slightly to include MHs that were only occasionally recommended due to heavy 
filtering. A dramatic increase in performance happened at the end of 2010 when discussions about 
MTIFL were undertaken. During the MTIFL discussions, it was determined that the Indexers 
would prefer to see a smaller list of MTI recommendations focused on Precision instead of the 
longer MTI recommendation list that had been provided since 2002. Several experiments were 
performed with varying filtering levels and the current model was chosen because it reduces the 
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amount of MTI recommendations and slightly favors Precision over Recall. The line for MTIFL 
shows the F1 values from February 2011 to the present. These results show better performance 
because MTIFL journals are specifically selected because MTI does particularly well on them.

6.  Project Status
MTI has been used by NLM indexers as they index the biomedical literature cited in MEDLINE 
since late 2002. The usage and indexing throughput graphs displayed earlier in Figure 1 show a 
steady increase in the usage of MTI by NLM indexers.

MTI is now a mature indexing tool that benefits greatly from a good relationship with its custom-
ers. The strides that MTI has been able to make over the last two years would not be possible 
without the continued collaboration with the Indexing Section providing much needed expertise 
and insight to the indexing task.

Table 10 displays Precision, Recall, and F1 measure for Overall statistics, Title Only statistics, 
and statistics for citations with both a Title and an Abstract. It clearly shows that between 2008 
and 2011 there is a shift towards fewer more precise recommendations with increases across the 
board in Precision statistics and only slight dips in the Recall. It also shows that MTI was able to 
provide recommendations for over 96% of the total number of citations that were indexed in 2011 
(of which, as mentioned earlier, indexers use about 50%).

Table 10.  MTI through the Years

MTIFL has greatly expanded the assistance that MTI can provide and increased the pressure on 
MTI to continually improve. We can see a dramatic increase in the F1 measure for MTIFL jour-
nals and care needs to be taken to make sure that these increases are due to MTI improvements 
and not to changes in indexer habits. Indexers are told to leave MTI indexing that is not incorrect 
and correct only that which is wrong -- meaning that MTIFL indexing is treated the same as a 
human indexer. This differs greatly from normal indexing where MTI is simply used as a tool for 
indexers to use or not use as they wish. So, the enthusiasm for the dramatic increases has to be 
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tempered with the knowledge that some of the change is due to how MTIFL is used and not to 
improvements in the program itself.

In the first year we were able to provide MTIFL indexing for 3,435 citations with an overall F1 
measure of 0.6428 (Recall: 0.6111, Precision: 0.6780).

7.  Project Schedule and Resources
Recent major II accomplishments include the initiation of the MTIFL capability, the first release 
of a Windows XP/7 version of MetaMap, and major efficiency and functional improvements to 
MetaMap. In addition, research efforts with Antonio Jimeno-Yepes and Caitlin Sticco have 
greatly enhanced MetaMap’s disambiguation capability and led to the creation of the GIA proto-
type for assisting indexers in creating geneRIFs, respectively. In the near term, II development 
will focus on maintaining and extending these milestones via the development tasks listed in the 
rest of this section while undertaking a limited number of new efforts such as the modularization 
effort described at the end of Section 8.

In addition, we will continue to pursue external collaborations such as those with the IBM 
DeepQA group and the NCI group at NIH.

7.1  MetaMap Development
•  Migrate MetaMap’s use of UMLS data from Original Release Format to Rich Release Format
•  Develop high-level MetaMap modules (e.g., tokenizer, parser, tagger, concept identification) 

that allow plug-and-play swapping (e.g., for UIMA)
•  Extend MetaMap to read text in forms such as XML-tagged structured documents
•  Complete migration of access to the SPECIALIST Lexicon from the current ‘C’ code to the 

Java-based lexAccess facility
•  Explore lexical normalization of word variants such as breastfeeding, breast feeding, and 

breast-feeding
•  Allow MetaMap to handle UTF-8 input
•  Implement subsynonymy, i.e., be able to map acute heart attack to ‘Acute Myocardial Infarc-

tion’ based on the synonymous relationship between ‘Heart Attack’ and ‘Myocardial Infarc-
tion’

•  Include additional WSD algorithms in the next deliverable version of MetaMap

7.2  MTI Development
•  Continue evaluation of MTIFL, focusing on indexing consistency and the adequacy of MTI rec-

ommendations simply being revised
•  Expand MTIFL usage in cooperation with the Index Section to identify additional journals suit-

able for MTIFL processing
•  Add species detection to MTI to further assist MTI in disambiguating protein mentions that 

apply to multiple species (for example, TRPC6 protein can be either human, mouse, rat, or 
zebrafish)
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•  Expand and refine the use of Indexer coordination rules (associations between MeSH terms that 
require inclusion of one MeSH term if its associate is being recommended) in MTI

•  Expand the use of Machine Learning and filtering to improve the performance for underper-
forming MeSH Headings

•  Integrate more learning algorithms into the MTI ML package; trained versions of these algo-
rithms will be used with selected MeSH headings

•  Improve the geneRIF predictions given indexers’ feedback from GIA, the GeneRIF Indexing 
Assistant prototype

•  Explore the possibility of using structured abstract sections (BACKGROUND, OBJECTIVE, 
METHODS, RESULTS, CONCLUSIONS) to improve MTI performance by limiting MTI pro-
cessing to specific sections or applying different levels of confidence to them

•  Use the fact that MTI’s top recommendation is correct 84% of the time to devise a method to fil-
ter out non-relevant recommendations based on MeSH co-occurrences with the top recommen-
dation

•  Explore the demand for adding XML formatted output to MTI, providing users with a richer 
output set and facilitating further processing

•  Determine if tailoring MetaMap’s behavior for the semantic type “orch” (Organic Chemical) 
would boost MTI’s recognition of MeSH Supplemental Concepts

•  Explore the application of MetaMap’s acronym/abbreviation expansion logic to help remove 
ambiguity in MTI processing

7.3  Availability Development
•  Produce a tutorial document on using non-UMLS data sources (thesauri and ontologies) with 

MetaMap through the use of the Data File Builder
•  Create a fully RESTful (rather than REST-like) interface for the SKR API
•  Support object representation of the parser component of machine output in Java API

8.  Summary and Future Plans
The Indexing Initiative began with the realization that the volume of biomedical literature is 
growing dramatically in the context of limited resources (with regard to experienced indexers and 
due to budgetary issues) available for indexing that literature. Early II efforts consisted of a dispa-
rate collection of research projects examining various aspects of the indexing problem. The result 
of these efforts was the creation of the NLM Medical Text Indexer (MTI) system that is in current 
use in multiple NLM environments. Recent work has focused on expanding MTI’s capabilities 
and its accuracy and usefulness to NLM indexers. The plan described in the previous section will 
guide future efforts to apply MTI to an even wider range of environments.

The benefit of a very close collaboration with the NLM Index Section cannot be overstated. This 
collaboration provides a deeper understanding of the manual indexing process and insights into 
other possible avenues where MTI might be used to assist in the indexing process at NLM. We 
plan to continue this fruitful collaboration and expect that it will continue to produce significant 
improvements in MTI’s indexing results.



9.  Acknowledgements

The NLM Indexing Initiative 42

MetaMap is widely acknowledged as one of the premier concept extraction tools for biomedical 
text. Nevertheless, new concept extractors appear regularly, often having been developed for a 
specific extraction task. One possibility for a major II effort aimed at maintaining its leadership 
role in indexing and concept extraction would be to modularize MetaMap for the purpose of 
exploring plug and play strategies with its components. We previously created a Java-based ver-
sion of MetaMap (MMTx) under the assumption that Java would make MMTx more portable 
than MetaMap, which is written primarily in Prolog. The failure of the MMTx effort to reproduce 
MetaMap’s results in approximately the same time has led us to be cautious about such migration 
efforts. But now that we are releasing MetaMap in Prolog form, it seems likely that a modulariza-
tion in Prolog is much more likely to succeed and allow for replacing individual components with 
better performing ones. Such an effort would, if successful, also allow us to keep MetaMap at the 
forefront of biomedical concept extraction.
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11.  Appendix
This appendix contains the following information:

•  a glossary of acronyms used throughout this report;
•  links for downloads of programs, data and services, organized into several II-related areas;
•  2011 web access statistics for II tools; and
•  a comprehensive list of Medical Informatics Training Fellows who have performed research 

with the II team.

11.1  Glossary of Acronyms
AA: Acronym and Abbreviation

AEC: Automatically Extracted Corpus from MEDLINE

CT: CheckTag

DCMS: Data Creation and Maintenance System

DFB: Data File Builder

geneRIF: Gene Reference Into Function

GIA: Gene Indexing Assistant

HM: Heading Mapped To

HMD: History of Medicine Division

II: Indexing Initiative

INAH: isonicotinic acid hydrazid

IR: Information Retrieval

JDI: Journal Descriptor Indexing
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JD: Journal Descriptor

k-NN: k-Nearest Neighbors

MBR: MEDLINE Baseline Repository

MeSH: Medical Subject Headings

MH: MeSH Heading

MMI: MetaMap Indexing

MRD: Machine Readable Dictionary

MTI: Medical Text Indexer

MTIFL: MTI First-Line Indexer

NB: Naive Bayes

NCI: National Cancer Institute

NLM: National Library of Medicine

NLP: Natural Language Processing

PII: Personally Identifiable Information

PRC: PubMed Related Citations

REIS: Reticulo-endothelial immune serum

SH: Subheading

STI: Semantic Type Indexing

SVM: Support Vector Machines

TCAP: Trimethyl cetyl ammonium pentachlorphenate

TREC: Text REtrieval Conference

UDA: User-Defined AA

UMLS: Unified Medical Language System

WSD: Word Sense Disambiguation

11.2  II Downloads

11.2.1  MetaMap
•  MetaMap program for Linux, Mac OS/X, and Windows XP/7 (UTS License Required)

http://metamap.nlm.nih.gov/#Downloads
•  MetaMap optional strict and relaxed UMLS data sets for 2011AB (Base, USABase, NLM), 

2011AA (Base, USABase, NLM), 2010AB, 2010AA, 2009AB, 2009AA, 2006, and 1999 
(UTS License Required)

http://metamap.nlm.nih.gov/MetaMap_Optional_Datasets.shtml
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•  MetaMap DataFileBuilder
http://metamap.nlm.nih.gov/#Downloads

•  MetaMap Java API
http://metamap.nlm.nih.gov/#Downloads

•  MetaMap UIMA Wrapper
http://metamap.nlm.nih.gov/#Downloads

•  2011AA Semantic Type Mappings
http://metamap.nlm.nih.gov/FAQ.html

•  2011 Semantic Group File
http://metamap.nlm.nih.gov/FAQ.html

11.2.2  Semantic Knowledge Representation (SKR)
•  SKR Web API (UTS License Required)

http://skr.nlm.nih.gov/SKR_API/index.shtml

11.2.3  Indexing Initiative
•  200 MEDLINE Citations Test Collection

http://ii.nlm.nih.gov/TestCollections/index.shtml
•  500 PubMed Central Full Text Test Collection

http://ii.nlm.nih.gov/TestCollections/index.shtml
•  151 Citation GIA Test Collection

http://ii.nlm.nih.gov/TestCollections/index.shtml
•  MTI ML - Complete Machine Learning package for training, testing, and running

http://ii.nlm.nih.gov/MTI_ML/index.shtml

11.2.4  Word Sense Disambiguation
•  Original Word Sense Disambiguation Test Collection (UTS License Required)

http://wsd.nlm.nih.gov/Restricted/index.shtml
•  PMID Identified Word Sense Disambiguation Test Collection (UTS License Required)

http://wsd.nlm.nih.gov/Restricted/PMID/index.shtml
•  WSD Choices Linked to UMLS CUIs

http://wsd.nlm.nih.gov/collaboration.shtml
•  Exploiting MeSH indexing in MEDLINE Full MSH WSD Data Set

http://wsd.nlm.nih.gov/collaboration.shtml
•  Exploiting MeSH indexing in MEDLINE Small MSH WSD Data Set

http://wsd.nlm.nih.gov/collaboration.shtml

11.2.5  Structured Abstracts
•  Updated Label List and NLM Category Mappings

http://structuredabstracts.nlm.nih.gov/downloads.shtml
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•  Original - 2011 Label List and NLM Category Mappings
http://structuredabstracts.nlm.nih.gov/downloads.shtml

•  Cohort Study Appendix - Structured Abstract Labels Research Dataset
http://structuredabstracts.nlm.nih.gov/downloads.shtml

11.2.6  MEDLINE Baseline Repository (MBR)
•  Frequency counts for Supplemental Concepts, MeSH Main Headings, Index Medicus MeSH 

Main Headings, MeSH Main and Subheading combinations, and MeSH Subheadings for 2002 
- 2012 MEDLINE Baselines

http://mbr.nlm.nih.gov/Download/index.shtml
•  Raw Data Files for each of the counts

http://mbr.nlm.nih.gov/Download/index.shtml
•  Histogram and Summary Files for MeSH Treecodes and Semantic Types.

http://mbr.nlm.nih.gov/Download/index.shtml
•  Semantic Type(s) for each MeSH Tree, Semantic Groups.

http://mbr.nlm.nih.gov/Download/index.shtml
•  Single and Bigram Word Counts over all of MEDLINE.

http://mbr.nlm.nih.gov/Download/index.shtml
•  MEDLINE Baseline Query Tool allowing creation of custom views of the 2002 - 2012 MED-

LINE Baselines. (MEDLINE License Required)
http://mbr.nlm.nih.gov/Query/index.shtml

12.3  Web Access Statistics
•  Indexing Initiative:

-      7,682 unique visits - 110 different countries
-         68 distinct files for 11,924 downloads

•  MEDLINE Baseline Repository:
-      3,477 unique visits - 80 different countries
-         952 distinct files for 22,484 downloads

•  MetaMap:
-      7,986 unique visits - 97 different countries
-          70 distinct files for 2,542 downloads
-                 1,044 for MetaMap program

                   565 Linux
                   200 Darwin (Mac/OS)
                   279 Windows

-                 41 for Data File Builder
•  SKR:

-      7,543 unique visits - 124 different countries
-         234 distinct files for 33,936 downloads
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-          70,235 Interactive Requests
               66,104 MetaMap Interactive
                           55,877 API
                           10,227 Web
                    149 SemRep Interactive
                           149 API
                 3,982 MTI Interactive
                           3,982 Web

-          86,944 Batch Requests
                     80,643 API
                                 17,108 SemRep
                                 21,012 MetaMap
                                 42,523 MTI
                       3,487 Web
                                 1,442 MetaMap
                                 1,372 Misc.
                                    416 SemRep
                                    257 MTI

•  Structured Abstracts:
-      1,081 unique visits - 55 different countries
-             6 distinct files for 632 downloads

•  Word Sense Disambiguation:
-      2,388 unique visits - 84 different countries
-            28 distinct files for 2,064 downloads

12.4  Indexing Initiative Research Fellows
The following is a list of major Research Fellows who have worked with Indexing Initiative staff 
since 1997. In each case, affiliation and status are stated as of the time of the visit to NLM.

•  Antonio J. Jimeno-Yepes: 2010-, European Bioinformatics Institute, UK, Postdoctoral Fellow
many machine learning research projects related to MEDLINE indexing, especially for word 
sense disambiguation

•  J. Caitlin Sticco, 2011-, University of Wisconsin at Madison, Library Associate Fellow
research and development of Gene Indexing Assistant (GIA), a tool for assisting in gene index-
ing

•  Kristen Greenland, 2011, University of Washington, Library Associate Fellow
project to determine how comment on MEDLINE articles should be indexed

•  Bartlomiej Wilkowski, 2010, University of Denmark, Postdoctoral Fellow
research projects on bottom up and MeSH-based MEDLINE indexing
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•  Bridget T. McInnes, 2008, University of Minnesota, Postgraduate Fellow
research projects on word sense disambiguation

•  Aurélie Névéol, 2006-2008, INSA de Rouen, Postdoctoral Fellow
comprehensive research projects on subheading attachment for MEDLINE indexing

•  Vivian K. Lee, 2007, Vanderbilt University, Postgraduate Fellow
research for the medical NLP challenge sponsored by Cincinnati Children’s Hospital Medical 
Center

•  Miguel E. Ruiz, 2007, SUNY Buffalo, Visiting Faculty
user-centered research study of MTI, and research for multiple TREC Genomics Track tasks

•  Stefan Darmoni, 2005, Rouen University, Visiting Faculty
research on and comparison of English- and French-based indexing methodologies

•  Patrick Ruch, 2005, University of Geneva, Visiting Faculty
research on text classification in MEDLINE, and research for multiple TREC Genomics Track 
tasks

•  Hongfang Liu, 2004, University of Maryland, Baltimore County, Visiting Scientist
research for multiple TREC Genomics Track tasks

•  Padmini Srinivasan, 2001-2002, University of Iowa, Visiting Faculty
multiple biomedical information retrieval research projects

•  Marc Weeber 2000, Gronigen University for Drug Exploration, Postgraduate Fellow
research projects on word sense disambiguation and literature-based discovery

•  Holly K. Grosetta Nardini, 1997, Johns Hopkins University, Library Associate Fellow
research project on hierarchical indexing


